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Executive Summary 

The U.S. Department of Transportation Office of the Assistant Secretary for Research 

and Technology (USDOT/OST-R) and the Georgia Department of Transportation 

(GDOT) co-sponsored this research project to propose technology that supports the 

application and validation of commercial remote sensing and spatial information 

(CRS&SI) technology.  GDOT supported the validation of intelligent transportation asset 

inventory, including traffic signs and asphalt pavement distresses using an intelligent 

Remote Sensing and GIS-based Asset Management System (RS-GAMS); the USDOT 

and the Georgia Institute of Technology (Georgia Tech) (through cost sharing) sponsored 

the integration and calibration of CRS&SI technology, which can be operated non-

destructively at highway speed to improve roadway asset management, including traffic 

signs and pavements.  

1. Research Focuses 

The following research focuses address GDOT and other transportation agencies’ needs 

regarding the use of CRS&SI technologies to improve the data collection, condition 

assessment, and management of the two types of transportation assets: signs and 

pavements. 

 Sign Assets 

o Develop and validate an enhanced sign inventory procedure using an image-

processing-based method and mobile LiDAR 

o Conduct a real-world, large-scale case study of traffic sign inventory and 

condition assessment  

o Conduct a feasibility study for using mobile LiDAR for sign condition assessment 

o  Develop a prototype GIS-based sign management system 

 Pavement Asset 

o Network-level rut depth measurement using the 3D laser 

o  Identify isolated ruts using the 3D laser in support of effective localized 

treatment 
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o  Develop and validate a quantitative method to scientifically evaluate the 

performance of different automatic pavement crack detection algorithms 

o  Validate the asphalt pavement crack detection using the 3D laser 

o  Analysis of crack propagation using long-term monitoring data 

2. Research Outcome and Major Findings 

The following conclusions are based on the research focuses for sign asset and pavement 

asset:  

 Sign Asset - Develop and validate an enhanced sign inventory procedure using 

an image-processing-based method and mobile LiDAR 

To improve the efficiency of traffic sign data collection, the automatic traffic sign 

detection and recognition algorithms using video log images and mobile LiDAR were 

tested using real data acquired from different transportation agencies and the Georgia 

Tech Sensing Vehicle (GTSV). The results demonstrate the potential for applying 

these automatic algorithms for establishing a cost-effective sign inventory method.  

For the automatic traffic sign detection algorithm that used video log images provided 

by LaDOTD and the city of Nashville, more than 75% of the traffic signs were 

correctly detected. For the automatic traffic sign recognition algorithm that used 

video log images collected by the GTSV, 81% of the stop signs and 96% of the speed 

limit signs were correctly recognized. For the automatic traffic sign detection 

algorithm that used mobile LiDAR, more than 94% of the traffic signs were correctly 

detected based on 17.5 miles of the LiDAR data collected by the GTSV on I-95 near 

Savannah, Georgia. The LiDAR technology is very promising for sign data 

collection. 

While the current algorithms cannot achieve a satisfactory detection and recognition 

accuracy for fully automatic data collection purposes, an enhanced procedure was 

proposed. The procedure enables the incorporation of these developed algorithms and 

technologies into the manual process method. The efficiency of the proposed 

procedure can be further enhanced by improving the detection and recognition 
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algorithms. The ultimate goal of developing full automation can be achieved when 

the accuracy of the algorithms reaches a satisfactory level. The preliminary 

assessment results are based on 47 traffic signs on I-95 and demonstrate a 40% 

improvement over the manual data collection process (i.e. the frame-by-frame manual 

review).  

 Sign Asset – A real-world, large-scale case study of traffic sign inventory and 

condition assessment  

A real-world, large-scale case study was conducted on I-285 to practice the enhanced 

procedure for traffic sign inventory and condition assessment.  Other than the data 

collection productivity, the enhanced procedure greatly reduces the danger to 

engineers by enabling them to inventory signs without being exposed to roadway 

hazards, especially on interstate highways and near overhead signs. The case study 

identified 2,969 signs on I-285. The majority of the installed traffic signs on interstate 

highways are messages signs that convey direction, destination, and service 

information (2,321 signs, 78.17%).  A large percentage of installed traffic signs are 

mounted on overhead structures on interstate highways (643 signs, 21.66%).  There 

are 252 signs in poor visual condition that require sign maintenance action based on 

the sign condition assessment. 

Visual inspection on the high-resolution video log images reveals the possible reasons 

for damaged signs.  The most frequently occurring sign damage type is surface failure 

on milepost signs due to truck gusts. The signs are located on concrete lane barriers, 

on roadsides, or on medians.  These signs are damaged by the strong truck gusts that 

are created by fast-moving trucks. Another sign type suffering frequent damage is 

made up of exit signs that are damaged due to the instability of their dual posts. They 

are located at the interstate exits. The inspection shows that the signs are damaged by 

the unbalanced vibration and twisting of the dual posts. In addition, post failures 

frequently occur due to direct-crash impacts or soft bases. The only type of overhead 

sign that is damaged is D3-1 (i.e. street name sign) mounted on bridges.  The majority 

of D3-1 signs are damaged due to surface failure (i.e. color fading and erosion).   
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Again, this pilot study has demonstrated that the enhanced procedure can save time 

and money on sign inventory data collection.  

 Sign Asset - Feasibility study of using mobile LiDAR for sign condition 

assessment 

To validate the use of mobile LiDAR for sign retroreflectivity condition assessment, 

ten Type I stop signs collected in a community in Savannah, Georgia have been tested 

to demonstrate the feasibility of the tested LiDAR-based method. The ground truths 

were established using both nighttime visual inspection and retroreflectometer 

measurement. The retroreflectivity condition assessment results using the proposed 

method are consistent with all of the nighttime visual inspection results; they match 

90% of the retroreflectometer measurement results in differentiating good and bad 

sign retroreflectivity conditions. Using the developed mobile LiDAR-based method, a 

traffic sign retroreflectivity condition assessment can be conducted cost-effectively at 

highway speed.  

 Sign Asset - Develop a prototype GIS-based sign management system 

A prototype GIS-based sign management system was developed in this study. The 

objective is to demonstrate the capability of a GIS platform for integrating different 

data sources, including traffic sign data, video log images, and GIS maps, managing 

important traffic sign data, and supporting various sign maintenance practices. 

Though this prototype is not a comprehensive, final product, it is the foundation for 

the future implementation of a full GIS-based sign management system. 

 Pavement Asset - Network-level rut depth measurement using the 3D laser 

Rutting is one of the important pavement performance measures required by the 

Highway Performance Monitoring System (HPMS), and every state DOT is required 

to submit the data to the Federal Highway Administration (FHWA) annually. 

However, the point-based laser measurement methods (e.g. 3 points) commonly used 

by state DOTs may not be reliable due to vehicle wandering, variation of rut 

locations, and rut shapes. Preliminary test results show that 3-point and 5-point rut 
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bar systems significantly underestimate rut depth, and the average relative 

measurement errors for 3-point and 5-point rut bar systems are about 63% and 44%. 

If the number of sensors is more than 25, the relative measurement error drops 

constantly to a value below 10%. With a 39-point, equally-spaced rut bar system, the 

relative measurement error is about 8%. 

Unlike the traditional manual and rut-bar measurement methods, the 3D laser has 

virtually 100% coverage in a travel lane width (4,000 range measurements for a 

pavement 4 meters wide, with a 1 mm resolution in transverse direction). It provides a 

more accurate and reliable method for measuring rut depth than the traditional rut-bar 

method. According to laboratory and field tests (field tests were conducted on several 

roadway sections selected in Pooler, Georgia), the 3D laser can provide rut depth 

measurements with satisfactory accuracy. The measurement error is within ±3mm 

and satisfies the accuracy requirements of many state transportation agencies.  It is 

capable of performing project-level and network-level rutting condition assessment.  

Besides providing the information needed for network-level rutting condition 

assessment, the integrated 3D laser provides much denser rutting data. In cooperation 

with GDOT liaison engineers, case studies were performed on several state and non-

state routes using the integrated 3D laser. A systematic approach was developed to 

aggregate the raw, continuous rut depth measurements on each pavement segment 

and to generate different statistical indicators that can provide added value to 

engineers of state DOTs.  The 3D laser can provide more useful network-level rutting 

data and better support for network-level maintenance decision-making than can 

GDOT's past rutting survey results. GDOT liaison engineers suggested that the 60th 

percentile rut depth might be a good rutting indicator on each pavement segment. 

Again, the developed technology can help GDOT meet MAP-21 performance 

measure requirements on interstate highways. 
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 Pavement Asset - Identify isolated ruts using the 3D laser in support of effective 

localized treatment 

The accurate and dense rutting information acquired by the 3D laser provides an 

opportunity to further identify isolated ruts, which has never been done in the past 

due to the lack of continuous and accurate rutting measurements in the longitudinal 

direction. The identification of isolated ruts can better support effective, low-cost 

localized pavement treatments and the efficient use of the currently stringent 

pavement preservation funds. After discussing these issues with GDOT liaison 

engineers, four sets of criteria were proposed to define an isolated rut: rut depth 

requirement, rut length requirement, rut division criterion, and rut termini 

determination criterion. Case studies on two selected roadway sections show the 

developed approach is applicable to and promising for use in transportation agencies’ 

pavement preservation practices. 

 Pavement Asset - Develop and validate a quantitative method to scientifically 

evaluate the performance of different automatic pavement crack detection 

algorithms 

Pavement distress segmentation is identified as a crucial step for automatic distress 

detection and classification. Researchers have developed many segmentation 

algorithms, but it is difficult to compare the performance of different algorithms 

efficiently without an accurate quantitative method. Also, it is hard for a 

transportation agency to perform a quality check when automatic pavement crack 

detection is applied to its data collection. To address these issues, a novel 

quantification method based on the buffered Hausdorff distance was developed to 

evaluate the performance of distress segmentation algorithms.  

The proposed method was compared with four other common quantification 

methods (Mean Square Error (MSE), Statistical Correlation (SC), Receiving 

Operating Characteristic (ROC), and Hausdorff distance) on both real data (raw 

downward pavement images acquired from GDOT) and synthetic data. It was found 

that the proposed buffered Hausdorff scoring measure accurately reflected the 
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observed performance of the segmentation techniques and outperformed the other 

three quantification methods. Both MSE and SC are not sensitive to the relative 

proximity of the crack pixels between the segmented image and the ground truth 

image. The Hausdorff distance measure is very sensitive to outliers and is heavily 

influenced by isolated noise pixels that are far away from crack pixels. Thus, it does 

not accurately reflect the overall performance of a segmentation method. ROC is a 

useful scoring measure, but it suffers due to the fact that across a certain boundary, all 

crack pixels are either detected as true defects or false alarms. The proposed buffered 

Hausdorff distance measure gave evaluation results consistent with the visual 

performance inspection of different segmentation techniques. It also achieved good 

score separation to distinguish between the performance of different methods.  

Two potential applications of the proposed buffered Hausdorff distance measure were 

also explored, including the selection of proper distress segmentation algorithms and 

the optimization of algorithm parameter settings. Because the distress classifier 

definitions vary among states and regions, the testing of segmentation precision is 

of critical importance in assessing the reliability of pavement distress segmentation 

algorithms. The proposed method provides a solution for transportation agencies to 

quantitatively evaluate and choose the proper pavement distress segmentation 

algorithm based on their own survey requirements and actual performance of the 

crack detection/segmentation algorithm. Also, the proposed method provides an 

opportunity to optimize the parameter setting for each segmentation algorithm, since 

it gives sortable scoring measures for the algorithm performance under each 

parameter setting. Therefore, the proposed method is expected to help transportation 

agencies determine their automated pavement distress survey strategies. 

 Pavement Asset - Validate the asphalt pavement crack detection using the 3D 

laser 

The 3D laser is insensitive to different lighting conditions, low-intensity contrast, and 

pavement oil marks, unlike the traditional line scan camera. Laboratory tests on 

fabricated crack samples show consistent detection results in the daytime and 
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nighttime. Cracks with widths greater than 2 mm can be detected easily. However, a 

hairline crack with a width of approximately 1 mm is hard to detect due to the current 

resolution of the integrated 3D laser. Field tests on Georgia SR 80 were conducted 

under three different lighting conditions, daytime with shadow, daytime without 

shadow, and nighttime. The crack detection results show very good consistency and 

the average difference of performance scores is less than 2%. Though low-intensity 

contrast is a challenge for the traditional line scan camera for crack detection, the test 

result shows no difficulty for the integrated 3D laser as long as the crack is distinct 

when surface depth changes. Similarly, oil stains can be effectively removed from a 

possible crack that is falsely detected because of indistinguishable depth change.  

To validate the crack width measurement accuracy, 12 spots on two longitudinal 

cracks were selected on SR 275 near Savannah, Georgia with manually measured 

crack width as the ground truth. Cracks with widths greater than 2 mm can be 

detected correctly. However, cracks equal to and less than 1 mm cannot be detected 

correctly. Compared to the manually measured results, crack widths were captured 

well by the automatic method. The maximum absolute difference of crack width was 

1mm, and the average absolute difference was 0.4 mm. This result shows a promising 

potential to measure crack width for further crack classification tasks. While the 3D-

line-laser-provided software can effectively detect the longitudinal crack widths, the 

transverse crack width cannot be reliably detected because the current data resolution 

in the driving direction is about 5 mm.  Thus, the alignment angles of laser line to 

cracks affect the accuracy of crack width measurements. Improvement is needed in 

this area.  

 Pavement Asset - Feasibility Study of Crack Deterioration Behavior Using 3D 

Laser Data 

A feasibility study of asphalt pavement crack deterioration behavior was performed 

using long-term monitoring 3D laser data that has been collected since 2011 on a one-

mile test site on Pooler Parkway near Savannah, Georgia.  First, the crack growth in 

length and width for two selected individual cracks was analyzed; second, the crack 
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growth of clustered cracks in 0.1-mile subsections was studied.  These two studies 

demonstrated the use of long-term monitoring 3D laser data to explore the detailed 

crack deterioration behavior at the levels of individual cracks and clustered cracks, 

which can be used to support a) fundamental study of pavement mechanics and 

deterioration behavior, b) validation of current pavement design methods and 

development of new design concepts and methods, c) determination of adequate 

treatment methods and timing, d) development of accurate and reliable pavement 

deterioration models, and e) development of cost-effective pavement maintenance 

programming, for example an intelligent crack sealing planning.      

3. Recommendations for Future Research and Implementation 

The following suggest the future research and implementation:  

 The large-scale case study on I-285 traffic sign inventory and condition assessment 

shows that the proposed enhanced sign inventory procedure using video log images 

and mobile LiDAR is very promising and can greatly reduce the effort of manual sign 

data collection especially on interstate highways.  It is suggested that, using the 

proposed and validated method, a comprehensive sign inventory could be done for 

the entire 2,500-survey-mile interstate highways in Georgia (note: an special research 

study, RP 15-11, has been awarded by GDOT to implement the sign inventory on all 

interstate highways) 

 Sign retroreflectivity condition assessment is of great concern in GDOT and other 

state agencies.  The current preliminary study on engineer grade STOP signs show 

that mobile LiDAR could be a promising alternative to the time-consuming manual 

method for sign retroreflectivity condition assessment.  Further tests on more 

engineer grade STOP signs with different retroreflectivity conditions are still needed.  

Also, tests on other types of traffic signs, e.g. speed limit signs, warning signs, etc., 

with different sheeting materials are needed to study the sensitivity of the proposed 

method on different colors and sheeting materials. 
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 The currently developed prototype of the GIS-based sign management system has 

demonstrated the capability to integrate different spatial and non-spatial data sources, 

such as GIS maps, roadway images, and sign data, and improve sign management and 

maintenance practice. Next, a pilot study is suggested to further materialize the 

functionalities by using a large-scale dataset and introducing the GDOT’s practice on 

sign management and maintenance.   

 The comprehensive validation of network-level rutting measurement and isolated 

rutting detection shows that the 3D laser technology can be used to conduct the 

statewide rutting data collection.  In considering the difficulty for measuring rut depth 

on interstate highways, especially on the high-traffic-volume highways like I-285, it 

is suggested to firstly conduct rutting data collection for the entire 2,500-centerline-

mile interstate highways.  The collected data can be used for two purpose.  First, the 

data can be fed into COPACES database.  Thus, the current manual rutting data 

collection on interstate highway can be replaced by the automatic method.  Second, 

the full-coverage rutting data can further be used to identify isolated spots where 

rutting is a problem and local treatment can be done.  

 The validated crack detection using 3D laser data shows that this technology is 

capable of collecting cracking data.  Along with the validation of crack classification 

that is under development in an on-going research project (RS-GAMS Phase 2), the 

results can be fed into COPACES, which is very useful for high-traffic-volume 

interstate highways.  After the validation of crack classification is done, it is 

suggested to conduct a cracking survey for the entire interstate highways in Georgia. 

 Lateral wandering of data collection vehicle causes the variation of captured 

pavement surface area.  To mitigate the impact of this issue, more robust algorithms 

are needed for pavement marking detection, even in the case when a pavement 

marking is missed.  Furthermore, a mechanism is needed to facilitate a vehicle driver 

to conveniently maintain the vehicle in the middle of a lane while sensing data is 

being collected. 
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 The evaluation of crack width increasing rate was based an assumption that all fine 

cracks are newly developed cracks without further checking if they were actually new 

cracks or not.  This assumption could create some data variation because the tight, old 

cracks could, also, be excluded from the analysis.  Thus, developing a crack 

registration method to spatially align cracks that are collected at different timestamps 

is recommended; then, the behavior of crack width changing can be studied for 

spatially registered individual cracks or clustered cracks. 

 The current 3D laser technology is capable of collecting project-level and network-

level pavement distress data for purpose of pavement management and maintenance.  

However, studying detailed pavement crack deterioration behavior requires higher 

resolution of 3D laser data to detect finer cracks.  The 3D laser system used in this 

study has a resolution of 5 mm at longitudinal direction, which limits the capability to 

detect and measure the width of fine transverse cracks.  Thus, there is still a need to 

enhance the resolution of 3D laser system.  Fortunately, some manufacturers started 

to develop the new 3D laser system with 1 mm resolutions. 

 In current study, length-weighted average and median (50th percentile) crack widths 

are used to analyze the crack-width-related crack propagation.  To provide more 

informative statistics that can be more relevant to pavement maintenance, 

rehabilitation, and reconstruction (MR&R), other factors, e.g. 75th, 90th, or 95th 

percentiles, can be used to represent the overall crack width.  Further discussion with 

pavement engineers and experts will be needed. 
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Chapter 1 Introduction 

1. Background and Research Need 

The U.S. Department of Transportation (USDOT) and the Georgia Department of Transportation 

(GDOT) co-sponsored this research project to propose technology that supports the application 

and validation of commercial remote sensing and spatial information (CRS&SI) technology.  

GDOT supported the validation of intelligent transportation asset inventory, including traffic 

signs and asphalt pavement distresses, using an intelligent Remote Sensing and GIS-based Asset 

Management System (RS-GAMS), while USDOT and the Georgia Institute of Technology 

(Georgia Tech) shared the cost and sponsored the integration and calibration of CRS&SI 

technology, which can be operated non-destructively at highway speed.  

Figure 1.1 illustrates four major components included in the architecture of the proposed RS-

GAMS.  The four major components are 1) the sensing system; 2) data processing and 

collection; 3) data integration and management; and 4) decision support.  With the advance of 

sensing technology, many advanced sensors, including 2D imaging, 3D lasers, 3D LiDAR, and 

unmanned air vehicles (UAV), as shown in the first component in Figure 1.1, are available for 

use in transportation and asset management. However, there is an urgent need to develop a cost-

effective means to process this overwhelming amount of data, as shown in the second component 

in Figure 1.1. For example, engineers are interested in sign information and crack information 

(e.g. crack width, length, position, etc.) rather than raw images and laser points. As part of the 

comprehensive transportation asset management system, CRS&SI technologies play an 

important role in collecting various transportation asset data, including traffic signs, pavement 

surface conditions, roadway characteristics, etc., that critically support data-driven decision-

making. GIS is an excellent platform with which to integrate different data sources and provide 

convenient spatial data management functionalities. In the past, manual processing has been the 

major means of data collection; however, it is labor-intensive, time-consuming, subjective, and 

inaccurate. As a result, the subsequent decision-making lacks reliability. With the advancement 

of CRS&SI technologies, the data collection process can be dramatically improved with regard 

to its speed, comprehensiveness, accuracy, and reliability. However, the application of a new 
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technology always lags behind its development due to the end users’ concern about its usability 

and the risk resulting from the failure of significant investment. This technology gap can only be 

bridged by comprehensive testing and validation. This research project addresses this issue and 

aims to validate the applications of image processing and mobile light detection and ranging 

(LiDAR) technology for collecting traffic sign data; the project also addresses  using 3D line 

laser imaging technology (3D laser) for assessing pavement surface distresses, including rutting 

and cracking. This research project (RS-GAMS Phase 1) only focuses on validating the 

improvement of condition assessment and management by using the state-of-the-practice 

CRS&SI technologies on traffic signs and asphalt pavement surface distresses, as shown by the 

light grey blocks in Figure 1.1. The dark grey blocks in Figure 1.1 are tasks for an on-going 

project sponsored by USDOT and GODT (RS-GAMS Phase 2; RP 12-10).  

 

Figure 1.1 RS-GAMS Architecture 
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The challenges and research needs for inventory, condition assessment, and management of these 

two types of assets are discussed below. 

 Traffic Sign Asset 

Roadway traffic signs are important for roadway safety and traffic regulation. It is crucial for 

transportation agencies to maintain an inventory of signs in compliance with the revised 

Manual on Uniform Traffic Control Devices (MUTCD) that was published in 2012. 

However, sign inventory data collection is time-consuming and costly, even when using the 

currently available video-log-based method. This is because tremendous effort is needed to 

extract sign data, which is done one image at a time; this process has hindered the 

advancement of traffic sign inventory using roadway video log images. There is a need to 

develop a technology with an enhanced procedure to batch-process millions of roadway 

images instead of reviewing them frame by frame. Sign retroreflectivity condition is a major 

concern to highway agencies. The traditional measurement method is very time-consuming 

and costly because a state highway agency needs to survey its millions of signs. Thus, this 

project also explores the possibility of evaluating a sign’s retroreflectivity condition at 

highway speed using mobile LiDAR.  

 Asphalt Pavement Asset  

In the past, numerous automatic pavement distress detection algorithms have been developed 

by using 2D images acquired from line scan cameras. However, accurately and reliably 

detecting pavement distresses remains a challenge because of the inability to detect distresses 

under various lighting conditions (such as contrasts) and roadway environments.  A high-

resolution, downward, 3D laser technology operated at highway speed has been recently 

developed and is commercially available. Because the 3D laser captures the range (depth) 

change instead of lighting reflectance intensity on pavement surfaces, it can better address 

the important lighting challenges encountered in the past, and it can improve the existing 

automatic pavement distress detection methods. Scientific validation is needed to evaluate 

the 3D laser’s capabilities to detect pavement distresses of different roadway environments 

(e.g. lighting, shadows, etc.) and different pavement conditions (e.g. severities ranging from 

fine to large cracks). Rutting is one of the important pavement performance measures 

specified in the Highway Performance Monitoring System (HPMS) and must be annually 
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submitted to FHWA by state DOTs. The capability to reliably and accurately detect and 

measure rutting using the 3D laser is also validated in this study. The validation of the 3D 

laser will be indispensable for transportation agencies as they consider applying it to 

pavement distress detection activities.  

2. Introduction to Georgia Tech Sensing Vehicle 

To validate the pavement and roadway asset data collection using CRS&SI technologies, a 

sensing vehicle, the Georgia Tech Sensing Vehicle (GTSV), was developed by integrating the 

state-of-the-practice sensing systems.  Figure 1.2 shows the systematic diagram of the GTSV. 

This integrated system incorporates two primary sub-systems, including 3D laser and mobile 

LiDAR that collect the pavement distress data and the roadside appurtenance data. The mobile 

LiDAR also collects the precise GPS coordinates for the positioning purpose of the sensing 

vehicle. The additional power sub-system is used to supply uninterruptible power for both of the 

data collection sub-systems. To support the comprehensive validation tasks, both the supporting 

frames and the configurations of each individual sensor (e.g. height, orientation, etc.) can be 

flexibly adjusted for different configurations. The following introduce these two sub-systems in 

more detail.  

 

Figure 1.2 Systematic Scheme for the GTSV 
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2.1 Introduction to 3D Laser System 

The integrated 3D laser system is developed by INO, a leading company headquartered in 

Canada, and marketed by the Pavemetrics System Inc.  The 3D laser consists of three primary 

components, including the imaging component, the distance measuring component, and the data 

processing component. The imaging component is used to capture the pavement texture data 

using external infrared laser illumination and the spatial high intensity camera. This component 

consists of two separate laser sensors to cover a full-lane width. Each laser sensor includes a 

dedicated infrared laser illumination and a high-intensity area scanning camera. The distance 

measuring component provides a data-capturing signal by using a Distance Measurement 

Instrument (DMI), which is user-customizable. The data processing component computes the 

captured data into 3D range results using a high performance workstation. Figure 1.3 illustrates 

the 3D laser on the GTSV.  

 

Figure 1.3 Components of 3D Line Laser System Integrated on the GTSV 

As shown in the rear view of Figure 1.4, the two laser sensors are installed on each side of the 

roof at the back of the GTSV. The Field Of View (FOV) of the two sensors covers a full-lane 

width, i.e. 4 m. To avoid overlooking transverse cracks in the pavement, both sensors are 
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configured at approximately 15 degrees clockwise to the transverse direction, as shown in the top 

view of Figure 1.4. During data collection, each laser sensor uses a high-powered laser line 

projector with a customized filter to generate a fine infrared laser line illumining a strip of the 

pavement. The corresponding spatial high intensity camera captures the deformed laser line on 

the pavement. From the captured image, range measurements are extracted.  

The following describes the resolutions in x (transversal direction), y (longitudinal direction), and 

z (elevation) directions for the integrated 3D laser system. With a two-sensor setup, the 3D line 

laser produces 4,160 3D data points per profile (2,080 pixels per sensor) covering a 4 m 

pavement width. Therefore, the resolution in x direction is less than 1mm (4 m / 4,160 points). 

The resolution is 0.5 mm in z direction. The highest resolution in y direction depends on the 

shuttle speed of the high intensity camera and driving speed.  At a speed of 100 km/h, the 

minimum interval of transverse profiles is about 5 mm because the shuttle speed of the current 

system is 5,600 Hz.  To acquire smaller interval, the driving speed has to be reduced.    

 

Figure 1.4 Configuration of 3D Line Laser System on the GTSV 

2.2 Introduction to Mobile LiDAR System 

A mobile LiDAR system for data acquisition on a mobile platform, e.g. vehicle, train, etc., has 

been developed by Trimble Inc. and is integrated on the GTSV. The selected mobile LiDAR 

system has high accuracy and good re-configuration flexibility. The LiDAR systems in previous 

studies are either the airborne LiDAR system with x-y accuracy of meter level or a stationary 

terrestrial LiDAR system that is not mobile. The mobile LiDAR system integrated on the GTSV 

can be operated at highway speed with an accuracy of sub-10 cm in x, y and z directions.  
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The mobile LiDAR system integrated on GTSV consists of three primary components, including 

the LiDAR sensor, the precise positioning system, and the imaging system. The LiDAR sensor is 

used to acquire the point cloud of the target, e.g. a traffic sign. Each point includes the accurate 

distance from the sensor to the target, the relative angle of the laser beam with respect to the 

LiDAR sensor, and the corresponding reflectance intensity. The precise positioning system is 

used to acquire accurate GPS coordinates and poses for the LiDAR sensor. Thus, the GPS 

coordinates for each point from the LiDAR sensor can be derived. To acquire the precise GPS 

coordinates, the positioning system is composed of a GPS, an Inertial Measurement Unit (IMU), 

and a DMI. As most of the LiDAR sensors can only acquire point cloud data without any color 

information, the imaging system is typically integrated with the LiDAR sensor to provide 

corresponding color images. Figure 1.5 illustrates the mobile LiDAR system integrated on 

GTSV.   

 

Figure 1.5 Mobile LiDAR System Integrated on the Georgia Tech Sensing Vehicle 
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LiDAR sensors can be configured with different orientations for different targets. In this project, 

the purpose of introducing the mobile LiDAR system is to identify the feasibility of this 

technology for traffic sign asset data collection, including traffic sign inventory and condition 

assessment. Therefore, the LiDAR system is vertically oriented on the sensing vehicle and has a 

parallel line scanning pattern. Figure 1.6 shows this configuration and the scanning mechanism. 

This system can produce 10,000 laser points per second. As the vehicle moves in the longitudinal 

direction, the scanning line of the LiDAR system is aligned perpendicularly to the ground. The 

scanning range is ±40° to the horizontal direction, which produces an 80° fan covering the 

roadside. Currently, the frequency of the LiDAR system is configured at 100 Hz and 100 points 

within each scan, while the LiDAR heading angle is configured at 20°. Figure 1.6 shows the data 

acquisition. For example, if a standard 48 in. ×60 in. speed limit sign is mounted on the roadside 

with a lateral offset of 12 ft. (3.6 m) to the edge of the road, the current configuration will be able 

to acquire a point cloud containing approximately 12×8 points at 60 mph (100 km/h). As 

previously mentioned, the configuration can be adjusted to accommodate different data 

collection scenarios.  

 

Figure 1.6 Configuration of the Mobile LiDAR System and Scanning Mechanism 
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3. Research Focuses 

The following research focuses address GDOT and other transportation agencies’ needs 

regarding the use of CRS&SI technologies to improve the data collection, condition assessment, 

and management of the two types of transportation assets: sign asset and pavement asset. 

 Sign Asset - Develop and validate an enhanced sign inventory procedure using an 

image-processing-based method and mobile LiDAR 

Although video-log-based sign inventory can help reduce roadway hazards and improve 

safety during field data collection, the sign data collection procedure still remains a challenge 

because it is time-consuming for engineers to visually review (frame by frame) the large 

volume of images collected. Thus, there is an urgent need to enhance the efficiency of sign 

data collection using image data. With the advancement of image processing algorithms and 

mobile LiDAR, it is possible to speed up this process by incorporating them into a well-

designed data collection procedure. In this study, an enhanced sign inventory procedure was 

developed; image-processing algorithms and mobile LiDAR were incorporated to improve 

the data collection efficiency.  

 Sign Asset – A real-world large-scale case study on traffic sign inventory and condition 

assessment  

To practice the enhanced sign inventory procedure using video log images and mobile 

LiDAR, a real-world, large-scale case study was conducted on I-285.  Video log images and 

mobile LiDAR were collected using the GTSV.  All the signs, including both roadside signs 

and overhead signs, were collected.  A visual condition assessment was also conducted based 

on GDOT’s current practice. 

 Sign Asset - Feasibility study of using mobile LiDAR for sign retroreflectivity condition 

assessment 

Sign condition is mainly indicated by its retroreflectivity. The assessment methods suggested 

by the new MUTCD are labor-intensive and time-consuming. Thus, in this study, the 

feasibility of using mobile LiDAR for sign condition assessment was investigated. The basic 
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research steps are as follows: 1) measure its retro-reflectivity using a retroreflectometer and 

assess its condition based on MUTCD defined criteria; 2) collect the mobile LiDAR data for 

a sign and calculate its representative retro-intensity; and 3) correlate the measured retro-

reflectivity and retro-intensity. A relationship between these two types of measurements was 

first established.  

 Sign Asset - Develop a prototype GIS-based sign management system 

GIS is widely used for managing spatially-referenced roadway assets. In this study, a 

prototype GIS-based sign management system was developed to integrate different data 

sources, such as collected traffic signs, roadway images, road maps, and satellite images. A 

set of management tools was implemented to perform spatial query, attribute query, and data 

reporting.  

 Pavement Asset - Network-level rut depth measurement using the 3D laser 

Through laboratory tests and field tests, three major aspects were investigated and validated: 

1) Accuracy of the rut depth measurement with known objects using the integrated 3D laser. 

This is the foundation for performing two validations (Items 2 and 3 that follow). 2) 

Assessment of the traditionally used rut-bar measurement errors. A rut-bar system uses 3 to 

37 distinct laser sensors to measure pavement rutting. 3) Assessment of  the capability of 

network-level rut depth measurement using a 3D laser. To perform this study, large-scale 

field tests were conducted. 

 Pavement Asset - Identify isolated ruts using the 3D laser in support of effective 

localized treatment 

Isolated ruts are important pavement distresses that affect pavement structural integrity and 

driving safety. In the past, this type of distress has been hard to detect due to the lack of 

continuous pavement rutting measurements. Using 3D laser data in this study, a systematic 

approach was developed to identify the isolated ruts and to measure their maximum depth, 

length, area, and volume. This information could be useful for a transportation agency to 

determine effective treatment methods and to assess roadway safety. 
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 Pavement Asset - Develop and validate a quantitative method to scientifically evaluate 

the performance of different automatic pavement crack detection algorithms 

Automatic pavement crack detection algorithms have been widely studied in the past. 

However, the performance of these crack detection algorithms has not been scientifically 

validated. To address this problem, a quantitative method, the buffered Hausdorff distance 

based scoring method, was developed and validated in this study. 

 Pavement Asset - Validate the asphalt pavement crack detection using the 3D laser 

This study validated the capability of asphalt pavement crack detection using the 3D laser 

under different lighting conditions and in low-light intensity contrasts. Since the lighting 

condition has been the major issue in previous automatic pavement crack detection methods 

using line scan cameras, different lighting conditions were investigated and validated in 

laboratory tests and field tests. In the laboratory tests, cracks with different widths were 

simulated to validate the performance and capability of the current 3D laser for crack 

detection. Since crack width is a major factor for rating pavement surface condition, this 

study further validated the crack width measurement accuracy using the data acquired from 

the 3D laser and comparing the calculated results with the manually measured ground truth. 

 Pavement Asset - Feasibility Study of Crack Deterioration Behavior Using 3D Laser 

Data 

This study analyzed the asphalt pavement crack deterioration behavior using long-term 

monitoring 3D laser data.  The research results could be used to support a) fundamental study 

of pavement mechanics and deterioration behavior, b) validation of current pavement design 

methods and development of new design concepts and methods, c) determination of adequate 

treatment methods and timing, d) development of accurate and reliable pavement 

deterioration models, and e) development of cost-effective pavement maintenance 

programming, for example an intelligent crack sealing planning.  
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4. Report Organization 

This report summarizes the results of the research project co-sponsored by USDOT and GDOT.  

Though the results of validating data collection have been incorporated into the report for 

USDOT in consideration of completeness, the feasibility study of crack deterioration behavior 

and the large-scale case studies on sign data collection on Interstate 285 (I-285) were exclusively 

contained in this report for GDOT.   

This report is organized into ten chapters. Chapter 1 summarizes the research background, need, 

and approaches. Chapter 2 presents validation results for automatic traffic detection and 

recognition using image processing technology and mobile LiDAR. Chapter 3 presents a large-

scale case study of sign data collection and condition assessment on I-285. Chapter 4 presents the 

preliminary study on using mobile LiDAR to assess traffic sign retroreflectivity conditions. 

Chapter 5 introduces a prototype GIS-based sign management system. Chapter 6 presents the 

validation results for pavement rut depth measurement at the network level and isolated rut 

detection using the 3D laser. Chapter 7 presents a method to quantitatively evaluate the 

performance of different automatic pavement crack detection algorithms. Chapter 8 presents the 

validation results for crack detection using the 3D laser. Chapter 9 presents the feasibility study 

of crack deterioration behavior using long-term monitoring data. Chapter 10 summarizes the 

conclusions and makes recommendations for future research. 
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Chapter 2 Validation of Traffic Sign Inventory Using Video Log 

Images and Mobile LiDAR 

1. Introduction 

Traffic signs provide vital guidance to road users regarding traffic regulation, adequate road 

hazard warnings, destination and other geographic information, and temporary road conditions.   

State DOTs like GDOT invest very heavily in traffic signs.  To better manage traffic signs, “a 

coordinated program of policies and procedures which ensure that the highway agency provides 

a sign system that meets the need of the user most cost-effectively within available budget and 

constraints” is required (McGee & Paniati, 1998).  

As one of the most important elements of a traffic sign management system, traffic sign 

inventory provides the fundamental database for the traffic sign management system.  It is a 

collection of data containing essential traffic sign information, including locations and attributes 

(e.g. types, dimension, post, etc.).  Advancements in the development of information technology 

(IT) and emerging sensing devices, including GPS/GIS, computer vision, and LiDAR have 

promoted the technologies to such a level that the intelligent traffic sign inventory has now 

become possible.  

This chapter assesses existing automatic traffic sign inventory methods.  A literature review was 

first conducted to identify the state-of-the-practice and state-of-the-art research. Three automatic 

traffic sign detection and recognition methods using video log images and an automatic traffic 

sign detection method using LiDAR were critically assessed. Finally, based on the results of 

critical assessment, an enhanced automatic traffic sign inventory procedure is proposed to adapt 

the existing automatic methods and maximize their utilization in the current practice of state 

DOTs. 

2. Literature Review of Traffic Sign Inventory 

A comprehensive and reliable traffic sign inventory is indispensable for providing state DOTs 

with the fundamental information they need to manage their sign assets and support their 

subsequent maintenance decision-making.  
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2.1 Current Practice 

Based on a literature review, the current traffic sign inventory method carried out by state DOTs 

is, primarily, a manual process that includes a field engineer’s physically collecting a sign’s 

attributes in the field.  Only a few transportation agencies use a semi-automatic method to collect 

sign attributes.  The semi-automatic method uses an automatic traffic sign data collection system, 

which is comprised of a data acquisition vehicle and a manual process to extract traffic sign 

attributes from video log images.  This subsection uses GDOT and the city of Phoenix, Arizona, 

to illustrate the current inventory processes. 

2.1.1 Sign Data Collection Process in GDOT  

GDOT plans to use personal digital assistants (PDAs), as shown in Figure 2.1(a), barcode 

scanners, and GPS devices to inventory newly installed signs.  This method was for inventorying 

only newly installed signs but not for the existing signs because of the need for tremendous 

amounts of labor.  Some state DOTs also use digital cameras (Rasdorf et al., 2009).  Figure 

2.1(b) shows the process of traffic sign inventory using a PDA.  

STEP 1: The field engineer approaches the traffic sign and attaches a barcode sticker to the sign.  

STEP 2: The field engineer scans the barcode to create a traffic sign entry in the PDA. The 

MUTCD code and dimensions are manually input using the PDA program. The corresponding 

GPS coordinates can be automatically acquired using the PDA under the same entry.  

STEP 3: The field engineer then captures a digital photograph using the PDA. The image is 

automatically linked with the corresponding traffic sign entry.  This is a general step for state 

DOTs.  

STEP 4: At the end of the data collection day, the field engineer downloads the data from the 

PDA to a computer with geo-database and GIS software to render the traffic sign locations and 

their corresponding attributes. 

Several state DOTs use a similar practice, including the West Virginia DOT (WVDOT) (Paoly & 

Staud, 2010), the Louisiana Department of Transportation and Development (LaDOTD) 

(Wolshon, 2003), etc.  Although GDOT’s plans to use PDAs provides a means for traffic sign 

inventory, the process is time-consuming and unsafe due to two major drawbacks: 1) The field 
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engineer is required to physically approach traffic signs to collect the data. Many traffic signs, 

e.g. traffic signs are close to the roadside or on medians or they can be overhead traffic signs so 

inventorying them can be time-consuming and dangerous. 2) Extensive amounts of travel time 

are needed to travel from sign to sign.   Research conducted by LaDOTD identified the average 

data collection time for a traffic sign as 43 minutes (Wolshon, 2003). Thus, it is difficult to use 

this method to inventory all the existing signs. 

 
 
 
 
 
 
 
 
 
 
 
 
(a)       (b) 

Figure 2.1 The PDA Used in GDOT and Field Operation in GDOT 

2.1.2 Sign Data Collection Process in City of Phoenix, Arizona 

The city of Phoenix, Arizona, began its comprehensive sign inventory in 2010, covering more 

than 28,000 traffic signs along 215 miles of arterial street corridors (Moreno & Cook, 2010).  An 

integrated sensing vehicle is used to collect the traffic sign data; it is equipped with two video 

cameras and highly accurate GPS devices, as shown in Figure 2.2(a). The steps for using the 

system are as follows: 

STEP 1: The data collection vehicle collects video log images and GPS coordinates.  

STEP 2: The collected data is downloaded to a computer with geo-database and GIS software 

when the data collection is finished.  

STEP 3: The operator reviews the collected image frame by frame and manually types in the 

traffic sign attributes, as shown in Figure 2.2(b). The manual inputs are updated to the geo-

database.  
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     (a)         (b) 

Figure 2.2 The Traffic Sign Collection Vehicle in the Field and the Extraction Interface in 

the office in Phoenix (Moreno & Cook, 2010) 

Although the field data collection is achieved in an automatic fashion in less than 25 man hours, 

the data extraction is still manually conducted and takes more than 400 man hours. Though the 

data can be collected effectively and safely, the data extraction is still time-consuming and 

tedious.  Very few transportation agencies use this process for traffic sign inventory because 

limited human resources hinder the huge effort required for manual data extraction. 

In summary, there are several issues in the current practice for traffic sign inventory, including: 

1) the majority of state DOTs are still using manual processes, which are time-consuming and 

dangerous; 2) only a few state DOTs or other transportation agencies are using the semi-

automatic process in which the traffic sign data acquisition is automated but the manual traffic 

sign attribute extraction remains time-consuming and tedious. Consequently, there is a need to 

develop an automatic traffic sign inventory method that can not only enhance the existing semi-

automatic process, but also reliably and efficiently extract the traffic sign attributes 

automatically.  

2.2 Current Studies of Image-based Algorithms 

As the semi-automatic process poses a more effective and safer data collection approach for 

traffic sign inventory, many state DOTs have started to collect video log images of roadways for 

traffic sign inventory.  However, very few agencies are actually using the collected images for 

traffic sign inventory because the manual data extraction process is time-consuming and tedious.  

Thus, many image-based algorithms have been proposed to support the automatic process for 
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traffic sign inventory.  Based on a thorough literature review, automatic traffic sign detection and 

recognition are the two primary focuses of recent research. 

2.2.1 Automatic Traffic Sign Detection 

From the literature, automatic traffic sign detection is defined as a process of detecting the 

regions of interest (ROIs) in video log images in which traffic signs may exist.  All of the 

existing traffic sign detection algorithms have been developed using the distinct sign features 

defined in the MUTCD, including color and shape. There are three primary approaches for traffic 

sign detection: 1) color segmentation; 2) shape detection; and 3) the combination of color 

segmentation and shape detection. 

 Color segmentation 

Color segmentation is used to differentiate the unique traffic sign colors from the background 

in the video log images. Red, green, and blue (RGB) components are used for simple traffic 

sign color segmentation (Benallal & Meunier, 2003; Wu & Tsai, 2006). Lighting variation is  

one of the main problems. Other researchers introduced the color spaces that are more 

immune to lighting changes. The hue, saturation, and intensity (HSI) space is the most 

common space (de la Escalera, et al., 2003, 2004; Maldonado-Bascon, et al., 2007), whereas 

the LUV (Kang, et al., 1994) and YUV spaces (Miura, et al., 2000) have also been used. 

Nguwi and Kouzani (2008) segmented the input image in the HSI color space and 

successfully located traffic signs. Then, the classification module determined the type of 

detected traffic signs using a series of one-to-one architectural multilayer perceptron neural 

network (NN). Both the HSI and YUV color spaces were incorporated by Shadeed et al. 

(2003) to achieve better segmentation results. As the standard color space cannot always 

guarantee perfect color segmentation, several more complex color classifications have been 

proposed. Thus, a hierarchical region-growing technique was explored by Rehrmann and 

Priese (1997), and a database for the color pixel classification was presented by Priese et al. 

(1994, 1995). Tsai et al. (2009) proposed a color space extension method based on the 

probability of a certain pixel belonging to different MUTCD colors. Although these methods 

are comprehensive, they are computationally intensive. More importantly, the lighting 
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condition of the collected video log images can severely distort a traffic sign’s color, which 

can lead to incorrect color segmentation results. 

 Shape detection  

Shape detection is used to differentiate a traffic sign’s unique shape from other objects in the 

video log image. For traffic sign detection, several methods have been developed based on 

shape detection. For instance, Barnes et al. (2008) proposed a traffic sign detection algorithm 

using an a posteriori probability approach based on the locality and gradient information. 

Overett et al. (2009) used a fast histogram of oriented gradient features for pedestrian and 

traffic sign detection, which is suitable for use within typical boosting frameworks. A 

geometric model of the image gradient orientation was implemented by Balaroussi and Tarel 

(2009) to detect triangular signs. Milepost signs were detected by Marmo and Lombardi 

(2007) using optical flow analysis to identify the rectangular signs and then by searching 

gray-level discontinuity on the image and using the Hough transform for detection. To look 

for circular and triangular signs, edge orientations were used by Paclik et al. (2000). Barnes 

et al. (2008) implemented an algorithm based on fast radial symmetry, where patterns of edge 

orientations are exploited to detect triangular, square, and octagonal traffic signs. However, 

gradient-based feature detection is, by nature, sensitive to noise, and many shape detectors 

are slow in computing overly large images. It is also observed that most of the algorithms are 

designed for several specific shapes of traffic signs, rather than all of the ten shapes defined 

in the MUTCD. In addition, the cases of traffic sign occlusion are not well addressed.  

 Color segmentation and Shape Detection 

Recent works have used both color segmentation and shape detection to improve the 

detection rates (i.e. reduce the false negative (FN)) and, more importantly, reduce the false 

detections rates (i.e. false positive (FP)), which are frequent in the algorithms presented 

above. For instance, de la Escalera et al. (2003) selected the ROIs using the hue and 

saturation components, and then employed a genetic algorithm (GA) to the perimeter of the 

regions for the detection step. Ren et al. (2009) first converted RGB into HSI. Then, traffic 

signs candidates with special shapes were detected using the Hough transform. However, the 

Hough transform is computationally complex. Traffic sign detection based on histogram 
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thresholding in the HSI space and the support vector machine (SVM) was proposed by 

Maldonado-Bascon et al. (2007). The HSI color space is first used to segment the red, blue, 

and yellow regions, and the image’s achromatic decomposition is used to detect the white 

traffic signs. Then, traffic sign detection is accomplished by shape classification using linear 

SVMs, and final recognition is performed by employing Gaussian kernel SVMs. However, 

the algorithm is not robust to changing illumination. De la Escalera et al. (2004) added a step 

before the use of thresholds on HSI color values in which nonlinear transformation is 

employed over hue and saturation to enhance the desired colors in the image (i.e. red and 

blue) using two lookup tables for every color being sought. By combining the color and 

shape feature of traffic sign, the performance of the algorithms improved in terms of FN and 

FP.  

A generalized approach that can work for a broad set of traffic sign types is hard to find in 

literature. In the work of de la Escalera et al. (1997, 2003, 2004), Gil-Jiménez et al. (2005, 2007) 

and Maldonado-Bascon et al.( 2007), a generalized traffic sign detection method was proposed 

for the European traffic sign system using pictograms and a priori knowledge of the shapes and 

colors of traffic signs. The model, using only a red circle, a blue circle, and a blue rectangle, 

detected 176 types of traffic signs. In the work of Tsai et al. (2009), a generalized traffic sign 

detection method was developed for the MUTCD traffic sign system by which more than 670 

types of traffic signs containing ten MUTCD colors and more than ten MUTCD shapes can be 

detected. 

In summary, review of the literature shows that there some automatic traffic sign detection 

algorithms have been developed.  However, to develop a generalized traffic sign detection 

algorithm for the more than 670 types of traffic signs specified in the MUTCD is technically 

challenging.  Though some effort has been made by de la Escalera et al., Gil-Jiménez et al., and 

Tsai et al., three major challenges still remain: 1) the lighting changes in the video log images; 2) 

the discontinuous traffic sign boundaries in the video log images; and 3) the excessive number of 

FP cases. More importantly, thorough review of the literature shows that there is not  a 

systematic procedure to incorporate these developed algorithms into the current practices of state 

DOTs to practically improve the productivity of the image-based traffic sign inventory.  
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2.2.2 Automatic Traffic Sign Recognition 

From the literature, automatic traffic sign recognition is defined as a process to determine the 

MUTCD code for the detected traffic signs. Through an automated process, the detected traffic 

signs can be uniquely defined by assigning the MUTCD code based on the shape, the color, and 

the pictogram of a sign. The automatic recognition algorithms evaluate detected ROIs. Current 

literature identifies two primary approaches for traffic sign recognition, correlation and 

pictogram pattern recognition, which are explained below:  

 Correlation  

The initial approaches for traffic sign recognition primarily involve correlation methods on a 

pixel level. Piccioli et al. (1996) introduced a simple pixel-to-pixel correlation method using 

the normalized (50×50) template and the detection candidates. A similar method was adapted 

by Miura et al. (2000), who introduced a second threshold to reveal the distinction between 

the best recognized traffic sign from the rest. A fast, simulated annealing algorithm was 

developed by Betke and Makris (1995) for automatic traffic sign recognition. The normalized 

correlation coefficient was used as a measure of the match between a hypothesized object 

and traffic signs. The system presented by Miura et al. (2000) identified traffic signs by a 

normalized correlation-based pattern matching technique using a traffic sign image database. 

Barnes et al. (2008) adapted the fast, radial symmetry detector to eliminate almost all non-

sign pixels from the image and then applied normalized cross correlation to recognize the 

traffic signs. However, this method is suitable only for circular signs. Recent work by Paclik 

et al. (2006) improved the performance over standard cross correlation with a trainable 

similarity measures. Because of its simplicity, a correlation matching method can achieve 

traffic sign recognition for a large number of types. However, this technique can only 

perform well when the template images can be aligned well with the testing images, which is 

rarely the case due to the background clutter and geometrical distortion. In addition, it is a 

challenge to differentiate traffic signs with slight differences, e.g. warning signs with 

different texts.  
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 Pictogram pattern recognition 

Because the icon and text on a traffic sign display unique information of different types, 

pictogram pattern recognition approaches have been developed in recent years. A simple 

multi-layer NN using back-propagation (BP) (de la Escalera, et al., 1997; Nguwi & Kouzani, 

2008) was first introduced for recognition. Many improvements in NN have been adapted to 

address different issues in the traffic sign recognition. To improve the flexibility of the NN 

for accepting new patterns of traffic signs, the adaptive resonance NN was used instead of the 

BP method (Chiung-Yao, et al., 2003; de la Escalera, et al., 2003, 2004). To prevent the NN 

training from being trapped in local minima and to introduce the concept of similarity 

probability, the radial basis function (RBF) was used as the activation function instead of the 

typical sigmoid function (King Hann, et al., 2009; Yong-Jian, et al., 1994). To avoid the 

impact of background clutter and geometrical distortion, some techniques have been 

introduced to pre-process an image to produce the new input vector in other domains, e.g. 

Gabor wavelet transform (Douville, 2000). Sharing similar capability as NN but providing 

guaranteed global minima in the training process for classification and a less complex 

computation, the SVM technique became popular in traffic sign recognition. Gomez-Moreno 

et al. extensively used SVMs for traffic sign shape and color identification for detection and 

pictogram recognition (Gomez-Moreno, et al., 2010; Maldonado-Bascon, et al.; 2007, Wang, 

et al., 2010) using several Gaussian kernel SVMs. A different Laplace kernel classifier was 

also used for traffic sign recognitions (Paclík, et al., 2000). In addition, the boosting method 

was transferred from the field of face recognition to the field traffic sign recognition. Ada-

Boost using Haar features is the commonly used approach (Baro, et al., 2009; Hu & Tsai, 

2011; Ruta, et al., 2010), while other features, such as the Gabor wavelet feature (Koncar, et 

al., 2007), etc., were also studied. However, due to their computational complexity, it is not 

feasible to apply pictogram pattern recognition algorithms to recognize all types of traffic 

signs.  

In summary, although several individual traffic sign recognition algorithms have been 

developed, many of them can only recognize limited types of traffic signs. In addition, many 

traffic signs share similar pictograms with slight differences that cannot be recognized well. 

There is no literature that demonstrates good performance on a large group of traffic signs, e.g. 
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the complete warning sign group, which contains more than 200 types, many of which share 

similar pictograms.  

2.3 Research Need 

The traffic sign inventory methods currently used by state DOTs are primarily manual processes.  

These methods are unsafe, labor-intensive, and time-consuming.  Some transportation agencies 

are using a semi-automatic method that uses video log images.  Nevertheless, these methods 

require excessive manual data extraction, which might not be practical for state DOTs. To 

minimize the manual effort in traffic sign inventory, there have also been some attempts to 

develop algorithms for automatic traffic sign detection and recognition.  However, there are three 

primary challenges preventing these algorithms from practical use:  

 It is still a challenge to inventory all types of the traffic signs defined in the MUTCD.  

 All the existing algorithms use the unique features of traffic signs displayed in video log 

images. However, the performance of the algorithms is not robust to some of general 

challenges in the outdoor video log images that distort the unique features of traffic signs, 

e.g. lighting conditions, occlusion conditions, etc.  

 Most importantly, all the previous studies have focused on development or improvement of 

various algorithms’ performance. A systematic procedure to seamlessly adapt the existing 

algorithms in the existing traffic sign inventory process to minimize the manual effort is 

lacking.  

Before making an effort to improve the performance of the existing image-based methods and 

proposing new LiDAR-based methods, there is a need to comprehensively assess the 

performance of these methods to better understand the performance of existing algorithms.  The 

objective of this study is to critically assess the representative algorithms by demonstrating the 

results using actual data, summarizing the technical challenges, and recommending the 

utilization of the algorithms.  Also, a new, enhanced procedure can be proposed by flexibly 

adapting the existing automatic methods or the future improved methods into the current 

practices of state DOTs. Thus, the superiority of these automatic methods can be fully developed 

to improve the productivity of state DOTs.  
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3. Assessment of Automatic Traffic Sign Inventory Using Video Log Images 

This subsection presents the critical assessment of the existing automatic traffic sign detection 

and recognition methods using video log images, including three image-based traffic sign 

detection and recognition algorithms. The selected algorithms are as follows: 

 Generalized traffic sign detection method developed by Tsai et al. (2009). This method is the 

only one that has the capability to detect more than 670 types of MUTCD-defined traffic 

signs with different colors and shapes.  

 Specific stop sign and speed limit sign recognition method developed by Tsai and Wu (Tsai 

& Wu, 2002; Wu & Tsai, 2006). Stop signs and speed limit signs are two of the most 

important traffic signs. Moreover, the reliable stop sign and speed limit sign recognition 

provides prompt and reliable applications for state DOTs; even the recognition methods of 

other types of traffic sign are still under development.  

3.1 Data Preparation 

The objective for this data preparation is to comprehensively evaluate the performance of the 

automatic traffic sign detection and recognition algorithms using video log images. Two datasets 

are separately prepared to assess the performance of the generalized traffic sign detection for all 

types of traffic signs, and the performance of specific traffic sign recognition algorithms for stop 

signs and speed limit signs.  

The dataset for the generalized traffic sign detection algorithm was retrieved from the roadway 

video log image dataset provided by LaDOTD. The selected section was on Louisiana SR 541, 

covering 4.1 miles of the industrial area in Westwego, Louisiana, and contained 2,100 images.  

In this dataset, 64 traffic signs with different types were manually extracted as the ground truth. 

Figure 2.3 shows the data collection location. An additional dataset for the generalized traffic 

sign detection algorithm was retrieved from the roadway data collection in 2009-2010 by 

Roadware Company in Nashville, Tennessee. The selected section covered 5.0 miles of suburban 

area in Nashville and contained 1,320 images. In this dataset, 112 traffic signs of  different types 

were extracted for ground truth.  
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Figure 2.3 Data Collection Routes in Westwego, Louisiana for the Generalized Automatic 

Traffic Sign Detection Algorithm 

The dataset for the specific traffic sign recognition was collected using the GTSV.  The video log 

images were purposely collected on the streets that cover several blocks of residential area that 

contained  a sufficient sample of  stop signs and speed limit signs. The selected test roadway 

section was in the area of 37th street in downtown Savannah, Georgia, covering 8 miles of 

residential area. To populate the samples, two runs of data collection were conducted in different 

directions within the area. Figure 2.4 shows the direction of the two runs. In this dataset, 53 stop 

signs and 28 speed limit signs were manually extracted as the ground truth.  

 
Figure 2.4 Data Collection Routes in Savannah, Georgia for the Automatic Stop Sign and 

Speed Limit Sign Recognition 

SAV - Run 1 SAV - Run 2 
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3.2 Test Result 

3.2.1 Generalized Traffic Sign Detection 

The generalized traffic sign detection algorithm was developed to automatically detect all types 

of traffic signs on the roadways. In this test, two datasets containing the video log images 

collected by state DOT and city transportation agencies were tested to demonstrate the 

performance. FN and FP are used to quantitatively measure the performance, where FN 

measures the reliability of the algorithm, and FP measures the productivity of the algorithm. An 

FN case is counted if the algorithm does not detect a traffic sign in the image, while an FP case is 

counted if the algorithm mistakenly detects another object for a traffic sign. Table 2.1 shows the 

result of the two selected datasets. For the dataset from LaDOTD, 76.6% of the traffic signs were 

correctly detected, while 117 FP cases were identified. For the dataset from Nashville, 75.9% 

traffic signs were correctly detected, while 196 FP cases were identified.  

Table 2.1 The Results for the Generalized Traffic Sign Detection Algorithm 

LaDOTD Nashville 
Distance 4.1 miles Distance 5.0 miles 
# of Signs 64 # of Signs 112 
FN 15 FN 27 
FP 117 FP 196 

As demonstrated, the current algorithm can correctly detect more than 75% of the traffic signs 

(49 out of 64 for LaDOTD and 85 out of 112 for Nashville). Although the manual extract process 

is still needed, much effort in manually digitizing the traffic sign in the images can be saved. 

However, there remain some FN cases, and the FP cases are excessive in the current algorithm, 

which can be further improved. The detailed analysis is presented below: 

FN Case Analysis 

 Lighting Changes: Some FN cases are produced due to the lighting changes in the video log 

images because the colors captured from the camera are distorted when the lighting changes. 

Figure 2.5 shows two FN cases due to overexposure and backlighting. In these cases, most of 

the region in the whole image is mistakenly segmented as achromatic colors, i.e. white and 

black, which makes it difficult for the algorithm to differentiate the traffic sign region and the 
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background region. These cases can potentially be eliminated during the data collection by 

appropriately adjusting the camera settings, e.g. shutter speed and exposure time. However, 

due to the constant changes in driving directions and unpredictable weather conditions, many 

adjustments are hard to apply in time. An improvement in the color segmentation can 

potentially reduce the FN cases due to the lighting changes during the data processing. 

LiDAR technology can also be applied to reduce the FN cases caused by lighting changes.  

       

           (a)                                                           (b) 

Figure 2.5 Examples of two FN Cases Due to Lighting Changes: a) Overexposure; b) 

Backlighting 

 Discontinuous Boundary: Some FN cases are produced due to the discontinuous traffic sign 

boundaries captured in a video log image because the discontinuous boundary cannot be 

estimated as a closed traffic sign shape using the detected edges. The discontinuity is 

typically produced by partial occlusion, casting shadows over the traffic signs, multiple 

traffic signs on the same post with adjacent boundaries, etc. Figure 2.6 shows an FN case that 

is due to occlusion by tree branches. These cases can potentially be minimized by applying 

some active contour-based methods.  
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Figure 2.6 Example of an FN Case Due to Discontinuous Boundary 

 Other cases: There are several other FN cases identified in the critical assessment, including 

the object marker signs, the railroad crossing signs, and the traffic signs with poor conditions 

due to severe color deterioration.  

o For the object marker signs as shown in Figure 2.7(a), the yellow-black pattern of this 

type of sign provides challenges to the current algorithm because the algorithm requires 

identification of the boundary of a sign to detect the shape. These cases can be potentially 

minimized by applying a shape-merging algorithm to combine the individual stripes into 

a vertical rectangular shape. 

o For the railroad crossing signs as shown in Figure 2.7(b), the crossing shape of this type 

of sign provides challenges to the current algorithm that is based on convex shape 

approximation with limited number of vertices. These cases can be potentially minimized 

by applying the non-convex shape approximation algorithm. 

o For the traffic signs with poor conditions as show in Figure 2.7(c), the severe color 

deterioration completely altered the color profiles of the traffic sign. The algorithm 

cannot correctly segment the traffic sign and distinguish it from the background. 

Although severely deteriorated, many such traffic signs still have a good retroreflectivity. 

Thus, LiDAR technology can be used to reduce such FN cases.  

 FP Case Analysis 

As presented in the literature review, the color feature and shape features are used in the 

current algorithm. However, these two features are not sufficient for traffic signs, as there are 

many other objects sharing characteristics similar to the traffic signs in terms of color and 

shape. Many of these objects are detected as FP cases in the test, including mailboxes, 

advertisement posters, drums, guardrails, vehicle bodies, windows, etc. Figure 2.8 shows 
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examples of these FP cases. Because the retroreflectivity feature is another unique feature 

that can be introduced to differentiate the actual traffic signs, LiDAR technology is expected 

to be an effective tool to eliminate these identified FP cases. 

       

(a)        (b)              (c) 

Figure 2.7 Examples of Other FN Cases Identified in the Critical Assessment 

 
    (a) Guardrail               (b) Vehicle        (c) Window 

 
                   (d) Mailbox    (e) Advertisement poster         (f) Drum 

Figure 2.8 Sample of FP Cases Identified in the Assessment Test 

In summary, the test of the assessment using the generalized traffic sign detection algorithm 

shows that more than 75% of the traffic signs are correctly detected, which can save much effort 

in manually digitizing sign regions. Improvement in eliminating the FN cases from the current 

algorithm using video log images lies in three directions, including: 1) providing a better camera 

configuration and improving the color segmentation for achromatic colors; 2) improving the 

current shape approximation method; and 3) developing a shape-merging algorithm. The 

retroreflectivity feature from the LiDAR sensor is recommended to supplement the current 

algorithm improvement. In addition, the retroreflectivity feature is also recommended to be 
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introduced to minimize the FP cases, most of which are non-reflective objects. Section 4 presents 

such an automatic method using mobile LiDAR.  

3.2.2 Specific Traffic Sign Recognition 

Specific traffic sign recognition algorithms are developed to recognize specific types of traffic 

signs, e.g. stop signs, speed limit signs, etc. In this test, stop signs and speed limit signs were 

used to assess the performance of the algorithms. Table 2.2 shows the results using the data 

collected on 37th Street in Savannah, Georgia. For the stop sign recognition, 81% of the stop 

signs were correctly recognized, and only 11 FP cases were identified. For the speed limit sign 

recognition, 96% of speed limit signs were correctly recognized, and only 1 FP case was 

identified.  

Table 2.2 The Results for the Stop Sign and Speed Limit Sign Recognition Algorithms 

37th ST , Savannah 
Distance 8.0 miles

# of Stop Sign 53 
# of Speed Limit 28 
FN (Stop Sign) 10 

FN (Speed Limit) 1 
FP (Stop Sign) 11 

FP (Speed Limit) 1 

It is identified that the recognition algorithms perform well for recognizing both stop signs and 

speed limit signs in the test data. However, there are still some FN cases and FP cases identified 

in the test.  

For the stop sign recognition, the FN cases were produced due to casting shadows. All of the 

unrecognized stop signs were in the shade of the trees in the residential area, where strong 

shadows were cast over the traffic signs. Such casting shadows produce two impacts on the 

recognition, including 1) distortion of the red color into black color, as shown in Figure 2.9(a), 

and 2) production of inhomogeneous color in the sign regions, as shown in Figure 2.9(b). All the 

FP cases are from a vehicle brake light, which shares the same red color feature as the stop sign, 

as shown in Figure 2.9(c)  
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            (a) FN case 1               (b) FN case 2       (c) FP case 3 

Figure 2.9 FN and FP Cases Identified in the Stop Sign Recognition Algorithm 

For the speed limit sign recognition, the FN was produced due to occlusion by a branch. In this 

case, the digit "5" was connected with the leaves nearby, which introduced the problem for the 

color segmentation of the white and black colors, as shown in Figure 2.10(a). The only FP was 

produced because of the similar pictogram the objects shared with the traffic sign, i.e. the 

warning sign containing speed digit, as shown in Figure 2.10(b). 

In summary, the test in the assessment using two specific traffic sign recognition algorithms 

shows that 81% of the stop signs were correctly recognized with only 11 FP cases, and 96% of 

the speed limit signs were correctly recognized with only 1 FP case. The results show that it is 

feasible to apply the current recognition algorithm for the specific traffic signs, e.g. stop signs 

and speed limit signs. However, there is still a need to further improve the current performance. 

Besides, as identified in the literature review, there is a need to extend the current algorithms to 

recognize other important types of traffic signs, e.g. warning signs. Hence, the manual input 

effort of the MUTCD code can be further reduced.  

       
                   (a) FN case          (b) FP case 

Figure 2.10 FN and FP Cases Identified in the Speed Limit Sign Recognition Algorithm 
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4. Assessment of Automatic Traffic Sign Inventory Using mobile LiDAR 

This section is to assess the automatic traffic sign detection methods using LiDAR point cloud. 

Although there are very few systems using mobile LiDAR technologies to inventory traffic sign 

(Laflamme, 2006), most of these methods are proprietary and lack validation. The method in this 

assessment, by Ai and Tsai (2012), introduces the LiDAR-based method in automatic traffic sign 

inventory in detail and quantitatively studied the feasibility of this emerging technology.  

The objective of the experimental test is to assess the performance of the presented automatic 

traffic sign detection method using 3D LiDAR point cloud data. Actual data collected on I-95 

and 37th Street are used to critically assess the performance of the presented method in terms of 

detection rates and the FN and the FP. The adequate parameter values for a good detection rate 

are also suggested. 

The dataset collected on I-95 covers 17.5 miles of roadway containing 127 traffic signs with 

different attributes. The data was collected on the outer lane of the three-lane road at the speed of 

60 mph (100 km/h). The dataset collected on 37th Street covers 2.9 miles of roadway containing 

115 traffic signs with different attributes. The data was collected at the speed of 30 mph (50 

km/h). Both of the datasets were collected using the same LiDAR heading angle of 20° and 

scanning frequency of 100 Hz. The ground truth was manually extracted using the video log 

images that were synchronized with the LiDAR data. Figure 2.11 shows the map of the road 

sections for the data collection.  

4.1 Determination of Adequate Parameter Values 

The key of the LiDAR-based sign inventory method is to determine the adequate parameter 

values that are related to the basic traffic sign characteristics, including retroreflectivity, 

elevation, lateral offset and hit count. The initial parameter values can be set based on the 

MUTCD standard defining the traffic sign characteristics. To further adapt the traffic sign 

characteristics to different roadways, the first 10 traffic signs on different roadway types to 

calibrate the parameter values have been selected. Once these parameter values are calibrated, 

they can be applied to the same types of roadway. The following rules are used to determine the 

adequate parameter values:  
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Figure 2.11 The Selected Data Collection Sections for Experimental Test 

 Retro-intensity  

The retro-intensity is an important attribute in the LiDAR point cloud data. It is defined as 

the ratio of the energy returned from the object to the energy emitted from the LiDAR sensor. 

Since most of the traffic signs are designed to be retroreflective, most of the traffic signs 

have a relatively high retro-intensity value in the LiDAR point cloud data compared to other 

objects. A higher retro-intensity indicates a better object reflectance. The retro-intensity 

value selected for I-95 should be greater than that for 37th Street. It indicates that the traffic 

sign retroreflectivity condition on the major arterials is generally better than the local roads. 

On one hand, the retro-intensity value should be kept low enough to prevent FN (i.e. missing 

signs). On the other hand, a higher retro-intensity value is used to be selective on sign 

detection for minimizing the FP (i.e. false detection). From the observation of the selected 10 

traffic signs for calibration, the minimum retro-intensity values of 0.73 are identified for I-95 

and 0.67 for 37th Street. Therefore, values of 0.7 and 0.65 are used for I-95 and 37th Street, 

respectively. 

 Elevation  

Elevation is defined as the offset of the LiDAR point to the ground in the z direction. The 

elevation value selected for I-95 should be slightly smaller than that for 37th Street. It is 

consistent with the traffic sign installation standard defined in the MUTCD. For example, 
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although the traffic sign should be typically mounted at a minimum of 7 ft. (2.1 m), many 

secondary signs can be mounted at a minimum of 5ft. (1.5m) on freeways or expressways. 

Therefore, values of 4ft. (1.2m) and 6ft. (1.8m) are used for I-95 and for 37th Street, 

respectively. It is also suggested that the elevation value should not be smaller than 3 ft. 

(0.9m) to avoid the false detection of vehicle license plates and temporary traffic control 

drums.  

 Lateral Offset 

Lateral offset is defined as the offset of the LiDAR point to the data collection trajectory in 

the x-y direction. The lateral offset value selected for I-95 should be greater than that for 37th 

Street. It is consistent with the traffic sign installation standards defined in the MUTCD and 

the observation in the calibration set. Based on the MUTCD, a traffic sign should be mounted 

at a minimum of 12ft. (3.6m) lateral offset on freeways or expressways, but it should be a 

minimum of 2ft. (0.6m) lateral offset in residential areas. However, as observed in the 

calibration set, many specific service signs on the freeway or expressway are mounted as far 

as 48ft. off the road, while some of the traffic signs are mounted as far as 12ft. (3.6m) off the 

road when the region is not confined. Therefore, values of 60ft. (18.3m) and 20ft. (6.1m) are 

used for I-95 and 37th Street respectively.  

 Hit Count  

Hit count is defined as the number of LiDAR points that hit the cluster, which corresponds to 

the dimension of the traffic sign, the scanning frequency of the LiDAR sensor, the vehicle 

driving speed, and the distance between the traffic sign and the LiDAR sensor. The hit count 

value selected for I-95 should be smaller than that for 37th Street. LiDAR point cloud data is 

collected using consecutive scanning lines crossing the roadside objects. When the scanning 

frequency is fixed (i.e. 100 Hz), the distance between the consecutive scanning lines is 

determined by the driving speed, and the distance between the consecutive points within the 

same line is determined by the distance between the LiDAR sensor and the object. Therefore, 

a traffic sign with the same dimension contains fewer hit points on I-95 than on 37th Street 

because the vehicle speed for data collection is greater, while the distance from the LiDAR to 

the traffic sign is also larger on I-95 than on 37th Street. By exploring the smallest signs 
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collected in the datasets on I-95 (i.e. milepost sign) and on 37th, Street (i.e. no-parking sign) 

and based on the data collection speeds, values of 10 and 20 are used for I-95 and for 37th 

Street, respectively.  

The rules for determining adequate parameter values for the presented detection method are 

based on the characteristics of traffic signs defined in the MUTCD and the calibration from a 

fraction of the testing datasets. In this test, the first 10 traffic signs are used for the calibration. 

However, state DOTs can define their fractions for better parameter values. Table 2.3 presents 

the selected parameter values used for the experimental test in this study.  

Table 2.3 The Parameter Values Applied for the Tests on I-95 and 37th Street 

I-95 37th Street 
Retro-Intensity 0.70 Retro-Intensity 0.65 
Min Elevation (ft.) 4 Min Elevation (ft.) 6 
Max Lateral Distance (ft.) 60 Max Lateral Distance (ft.) 20 
Min Hit Count 10 Min Hit Count 20 

4.2 Test Result 

With the determined parameter values, the datasets collected on I-95 and 37th Street were tested 

using the presented method. Table 2.4 shows the automatic detection results.  

Table 2.4 Traffic Sign Detection Results for the Tests on I-95 and 37th Street 

I-95 37th Street 
Distance 17.5 miles Distance 2.9 miles 
# of Signs Tested 117  # of Signs Tested 105  
Detection Rate 94.0% Detection Rate 91.4% 
False Negative 7 False Negative 9 
False Positive 6 False Positive 7 

For the data collected on I-95, the detection rate is 94.0% with only 6 FP cases. For the data 

collected on 37th Street, the detection rate is 91.4% with only 7 FP cases. The results have 

demonstrated that the presented method using 3D LiDAR point cloud data is promising for 

providing an alternative for traffic sign inventory. 

A detailed analyses of the FN cases and FP cases was conducted. There are four types of FN 

cases: traffic signs with poor retroreflectivity condition, traffic signs with insufficient height, 

occluded traffic signs, and overhead traffic signs.  
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 Traffic sign with poor retroreflectivity condition.  

Several such FN cases were identified on 37th Street, where the retroreflectivity condition of 

the traffic signs is relatively poor. In contrast, this FN case was not identified on I-95, where 

the traffic signs are maintained in a timely manner. Figure 2.12 shows an example of a FN 

case containing a traffic sign with poor retroreflectivity condition on 37th Street. It can be 

observed in the video log image that the no-parking sign has severely deteriorated. In the 

corresponding LiDAR point cloud data, the retro-intensity values of the points within the no-

parking sign region are much smaller than the set parameter value of minimum retro-

intensity as 0.65. Therefore, the traffic sign region will not be detected from the background. 

Further investigation finds that the average of the retro-intensity values in the traffic sign 

regions is approximately 0.45. By further reducing the parameter value of retro-intensity to 

below 0.45, this traffic sign can be correctly detected. However, many FP cases are detected 

using such a small retro-intensity parameter value.  

 
Figure 2.12 Example of FN Case with a Traffic Sign with Poor Retroreflectivity on 37th 

Street 

 Traffic sign with insufficient height.  

Several such FN cases were identified on 37th Street, where some of the traffic signs failed to 

meet the height requirements defined in the MUTCD. In contrast, this FN case was not 

identified on I-95, where the traffic signs have better compliance. Figure 2.13 shows an 

example of a FN case containing a traffic sign with insufficient height on 37th Street. The 

height of the traffic sign measured 5.1ft. (1.6m), which is smaller than the set parameter 
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value of minimum elevation as 6ft. (1.8m). Therefore, the traffic sign region was rejected. By 

further reducing the parameter value of elevation to below 5ft. (1.5m), this traffic sign can be 

correctly detected. However, several additional FP cases were detected, such as the reflective 

stickers on the mailbox, etc. 

 
Figure 2.13 Example of a FN Case with a Traffic Sign with Insufficient Height on 37th 

Street 

 Occluded traffic sign  

One of the drawbacks of the LiDAR point cloud data collection is that only the object in the 

line of sight of the LiDAR sensor can be collected. Therefore, when the heading of the 

LiDAR sensor is configured at a fixed angle (e.g. 20° in this study), the line of sight is fixed. 

If the object closer to the LiDAR sensor is collected, the occluded object will not be detected. 

Figure 2.14(a) shows an example of a FN case containing an occluded traffic sign on I-95. 

The merge sign is occluded by the temporary work zone warning sign. Although in the video 

log image the merge sign is still visible, it cannot be detected using LiDAR point cloud data 

due to the occlusion. Similar cases are identified on the local road, where traffic signs are 

occluded by the tree branches, as shown in Figure 2.14(b).  

 Overhead traffic sign  

The coverage of the LiDAR data along the road is dependent on the path of the data 

collection vehicle and the heading angle of the LiDAR sensor (e.g. 20° in this study). For the 

purpose of traffic sign inventory, the LiDAR sensor is typically scanning vertically to the 
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roadside, and the data collection vehicle is driving on the outer lane of the road. Under such a 

configuration, it is likely that many overhead signs are not detected. In contrast, the overhead 

signs can still be collected in the video log images. Figure 2.15 shows examples of such FN 

cases on I-95 and 37th Street. 

 
(a) 

 
(b) 

Figure 2.14 Example of FN Cases Containing Occluded Signs on (a) I-95 and (b) 37th 

Street 

 
(a) 
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(b) 

Figure 2.15 Example of FN Cases Containing Overhead Signs on (a) I-95 and (b) 37th 

Street 

There are three types of FP cases in which objects with high retroreflectivity are mistakenly 

detected as traffic signs. Although the constraint of traffic sign elevation effectively rejects many 

of the objects with high retroreflectivity, such as vehicle license plate, temporary traffic control 

drums, etc., there are still several types of FP cases that are difficult to eliminate, including 

reflective commercial signs, changeable message boards, gates with reflective strips, etc. Figure 

2.16 shows the examples of the identified FP cases. It is observed that although these FP cases 

are mistakenly detected using 3D LiDAR point cloud data, they can be easily eliminated using 

the 2D video log images.  

 
           (a)       (b)            (c) 

Figure 2.16 Examples of the Identified FP Cases 

In summary, the results from the data collection on I-95 and 37th Street have demonstrated the 

presented method using 3D LiDAR point cloud data is promising for providing an alternative for 

traffic sign inventory. The suggested rules for determining the adequate parameter values show 

its effectiveness for the presented method. The FN and FP cases were critically assessed to assist 
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in exploring the potential improvements. Two of the identified FN cases can be further 

eliminated by adjusting the parameter values, e.g. the traffic signs with poor retroreflectivity 

condition and insufficient height, while the other two identified FN cases can be further 

eliminated by changing the LiDAR configuration, changing the data collection path, or 

integrating the presented method with the image-based method. The integration of the presented 

method with the image-based method can also help to eliminate the identified FP cases.  

5. An Enhanced Traffic Sign Inventory Procedure 

In the previous sections of this chapter, several state-of-the-art automatic traffic sign inventory 

methods have been critically assessed. The assessed methods demonstrated their potential for 

supporting automatic traffic sign inventory. However, those automatic methods cannot be 

directly applied in the current practice due to the nontrivial FN and FP cases. To address this 

issue, this section proposes an enhanced traffic sign inventory procedure to adapt the existing 

automatic methods and improve the current practice of state DOTs.  

5.1 Proposed Procedure 

The objective of the enhanced traffic sign inventory procedure is to improve the efficiency of the 

manual video-log-image-based sign inventory process by incorporating the existing automatic 

methods. The proposed sign inventory procedure should fully utilize the strength of the 

automatic methods and still employ the manual process to overcome the FN and FP problems 

stemming from the automatic ones. With the advancement of automatic methods, the efficiency 

of the proposed procedure should also be improved accordingly. Though the ultimate goal is to 

eliminate the need of the manual process, the framework can be utilized immediately in state 

DOTs’ practices. Figure 2.17 shows the complete processes of the traffic sign inventory 

including the proposed enhanced procedures. There are three primary paths to implement the 

traffic sign inventory using the collected raw traffic sign data, including: 
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Figure 2.17 Framework of the Enhanced Traffic Sign Inventory 

 PATH 1: Manual Process (Current practice) 

The manual process is typically used in the current operation for traffic sign inventory and 

condition assessment. The operator needs to manually review all the collected raw data, e.g. 

video log images, etc. The traffic sign locations are manually digitized on the image, and the 

traffic sign attributes are manually input into the inventory database. In addition, as the 

retroreflectivity condition cannot be visually inspected using video log images, a separate 

field trip for traffic sign condition assessment is still needed.  

 PATH 2: Fully Automatic Process (Final goal) 

This is a fully automated process that rigorously requires the automatic algorithms for 

detection, recognition, and condition assessment with high accuracy. This is the ultimate goal 

of the research and application. However, as presented above for the critical assessment, the 

existing algorithms are not yet reliable enough to achieve the goal.  
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 PATH 3: Semi-Automatic Process (Enhanced Procedure)  

The semi-automatic process contains the proposed enhanced procedure that can not only 

incorporate the current practice of manual process, but with the support of the existing 

algorithms, it can improve the traffic sign inventory productivity. Three sub-processes are 

proposed, including:  

o STEP 3.1: Traffic sign detection 

The raw traffic sign data is first processed using the enhanced image-based and LiDAR-

based traffic sign detection algorithms. Although not all the traffic signs can be detected 

using the existing algorithms, based on the assessment, more than 75% of the traffic signs 

in the image and more than 94% of the traffic signs in the LiDAR point cloud can 

correctly be extracted. The integration of the image-based algorithm and the LiDAR-

based algorithm can further reduce the number of undetected traffic signs (FNs) and the 

incorrectly detected cases (FPs). The remaining effort for manual input is twofold: 1) to 

manually extract the undetected traffic signs; 2) to manually remove the incorrectly 

detected cases. This means that the majority of the manual digitization effort for traffic 

sign extraction can be saved. In addition, as the removal of the incorrectly detected cases 

requires less effort compared to the effort for the extraction of undetected traffic signs, 

the efficiency of the whole detection process can be improved, although the excessive FP 

cases are identified using the existing algorithms.  

o STEP 3.2: Traffic sign recognition 

The raw traffic sign data is then processed using image-based traffic sign recognition 

algorithms. Although at the current stage only certain types of traffic sign can be 

recognized using the existing algorithms, at least more than 81% of the stop signs and 

96% of the speed limit signs can be correctly recognized. Because the regulatory signs 

contribute a large population of all the traffic signs on the road, much effort of manual 

input for MUTCD codes can be saved. The remaining effort for manual input includes 

the MUTCD codes for other traffic sign types and the revision of the wrong MUTCD 

code.  
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The enhanced procedure presented in PATH 3 for traffic sign inventory is not limited by the 

performance of any individual algorithm. As the performance of the algorithms improves in the 

future, the enhanced methodology demonstrates a better reliability and efficiency toward full 

automation. The less involvement of the algorithms in the inventory and condition assessment 

process, the more enhanced methodology steps back to the existing manual process. The 

application of the automatic algorithms can be flexibly determined by state DOTs based on their 

needs, data availability, financial situation, etc. Thus, the proposed enhanced methodology can 

be flexibly applied to the existing practices in state DOTs.  

5.2 Preliminary Assessment 

The objective of the preliminary assessment is to quantify the benefit of the proposed enhanced 

procedure compared to the traditional manual method. The benefit was measured by the average 

processing time for each traffic sign in the testing section to achieve a full inventory. The testing 

route was selected on I-95 southbound between MP 100 and MP 105 containing 47 traffic signs 

with different shapes, colors, and conditions. With the help of GDOT engineers, an additional 

survey using the manual process was conducted on a 2.5 mile roadway in a non-disclosed 

location and contained fewer than 100 traffic signs with different shapes, colors, and conditions.  

In this preliminary assessment test, the image-enhanced procedure, LiDAR-enhanced procedure, 

the in-office manual process, and the in-field process were compared. The algorithms and 

applications implemented by the Georgia Tech research team and the Trimble® Trident software 

were used for the preliminary assessment.  

 Image-enhanced procedure  

This corresponds to PATH 3 and was presented above. It requires the automatic traffic sign 

detection and recognition algorithms using video log images and the manual input. The video 

log images are first processed frame by frame using the algorithms as presented above. The 

operator then reviews the images frame by frame. The necessary typing-in and revision of the 

inventory information is manually input; otherwise, the image quickly skips to the next 

frame. 
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 LiDAR-enhanced procedure  

This also corresponds to PATH 3. It requires the automatic traffic sign detection algorithm 

using mobile LiDAR and manual input. The LiDAR point cloud is first processed using the 

algorithm as presented above. The operator then reviews the LiDAR point cloud and the 

corresponding video log image. The necessary typing-in and revision of the inventory 

information is manually input; otherwise, the image quickly skips to the next frame. 

 Manual Process (In-office)  

This corresponds to PATH 1. It requires the operator to manually review all the collected 

video log images frame by frame. On each image containing a traffic sign, the operator 

pauses and manually inputs the corresponding attribute information. All of the manual 

process in finished in office after the video log images are collected.  

 Manual Process (In-filed)  

This process does not use any video log image. It requires the operator to physically 

approach each traffic sign to be inventoried and manually input the corresponding inventory 

information. In this preliminary assessment, the information was input by GDOT using 

PDAs. All of the manual process is finished in the field.  

Table 2.5 Preliminary Assessment of the Enhanced Traffic Sign Inventory Procedure 

 
Image-Enhanced 

Procedure 

LiDAR-Enhanced 

Procedure 

Manual Process 

(In-office) 

Manual Process 

(In-field) 

Processing Time 

(sec/sign) 
148 74 244 288 

Table 2.5 shows the compared results between the enhanced procedure and the manual process. 

From the assessment result, it is observed that the enhanced procedures using either image or 

LiDAR-based automatic methods for traffic sign inventory is more efficient than the manual 

process, either in the office or in the field. The enhanced procedure using mobile LiDAR 
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demonstrates approximately a 65% improvement of the processing time over the in-office 

manual process, and 75% over the in-filed manual process. In addition, the enhanced procedure 

using image-based automatic methods is slightly slower than the one using mobile LiDAR due to 

the large resolution of the input video log images (i.e. 2,448×2,048). Nevertheless, it still 

improves by approximately 40% the processing time over the in-office manual process and by 

50% over the in-filed manual process. Currently, the automatic methods using video log images 

and mobile LiDAR have been separately tested and have yet to be integrated. Therefore, there is 

still good potential to further improve the processing time over the current result once the 

algorithms are integrated.  

It is also identified that for the in-office manual process, the navigation of the images and the 

digitization of the traffic sign polygon is the most time-consuming process, while for the in-field 

manual process, the traveling and stopping among different traffic signs is the most time-

consuming process. In the enhanced procedure, such processing time can be saved.  

Through the preliminary assessment results presented in Table 2.5, the enhanced procedures 

demonstrate a certain level of improvement over the traditional manual process. Further 

assessment using larger and more diverse datasets should produce increased benefits with the 

enhanced procedure. In addition, further improvement of the processing time is expected after 

the integration of the automatic methods using video log images and the one using mobile 

LiDAR.  

6. Summary and Discussions 

The objective of the critical assessment on the representative algorithms developed for traffic 

sign inventory is to demonstrate the results with actual data, to identify the challenges, and to 

recommend for the utilization of the algorithms supporting the current practice in state DOTs.  

In this chapter, both the automatic traffic sign detection and recognition algorithms using video 

log images and mobile LiDAR are critically assessed using actual data acquired from different 

transportation agencies and collected using the GTSV. The results have demonstrated the 

potential of applying these automatic algorithms in existing operational procedures for state 

DOTs to provide a reliable, efficient inventory method.  
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 For the automatic traffic sign detection algorithm using video log images, more than 75% of 

the traffic signs were correctly detected using the video log images acquired from LaDOTD 

and the city of Nashville. 

 For the automatic traffic sign recognition algorithm using video log images, 81% of the stop 

signs and 96% of the speed limit signs were correctly recognized using the video log images 

collected by the GTSV.  

 For the automatic traffic sign detection algorithm using mobile LiDAR, more than 94% of 

the traffic signs were correctly detected using the LiDAR data collected by the GTSV.  

However, several technical challenges are also identified from the assessed representative 

algorithms, including the following:  

 For the automatic traffic sign detection algorithm using video log images, there are still 

approximately 25% of the traffic signs that cannot be detected due to the lighting changes, 

discontinuous boundaries, and several other cases. In addition, there are excessive FP cases 

identified in the assessment results. At this stage, it is still challenging to achieve fully 

automatic traffic sign detection due to the identified FN and FP cases. Manual review of the 

complete dataset is still required to identify the undetected FN cases and to remove the 

excessive FP cases.  

 For the automatic traffic sign recognition algorithm using video log images, there are still 

several FN cases existing for both stop signs and speed limit signs due the lighting issues. 

More importantly, as only limited types of traffic signs can be automatically recognized, 

manual review of the complete dataset is still required to identify the MUTCD codes for 

other traffic sign types. 

 For the automatic traffic sign detection algorithm using mobile LiDAR, there are still several 

FN cases due to the poor retroreflectivity, occlusion, non-compliant traffic signs, and 

overhead signs. In addition, several FP cases are identified, as they share retroreflectivity 

similar to traffic signs. Further integrating with the image-based algorithms could potentially 

reduce the FN and FP cases. However, at the current stage, manual review of the complete 

dataset is still required to identify the undetected FN cases and to remove the FP cases. 
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In summary, although there is potential to apply the assessed representative algorithms to the 

existing traffic sign inventory operation procedures, the identified FN and FP cases still require 

manual review of the complete dataset. Therefore, on one hand, there is a need to further 

improve the performance of the individual algorithms. On the other hand, to promptly overcome 

these challenges and maximize the utilization of the existing automatic methods in the current 

practice of state DOTs, a new enhanced traffic sign inventory procedure is proposed in Section 5 

of this chapter. The existing automatic methods or the future improved ones can be flexibly 

incorporated into the procedure. The preliminary assessment has demonstrated a good 

improvement (more than 40%) over the traditional manual process in terms of processing time. 

The further integration of the automatic methods using video log images and the mobile LiDAR 

shows more improvement of the processing time for traffic sign inventory.  
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Chapter 3 Traffic Sign Inventory and Condition Assessment – A 

Case Study on I-285 

1. Introduction 

Previous chapters validated the performance of automatic sign inventory using video log images 

and mobile LiDAR.  Although the performance of these methods remains to be improved to full 

automation, tremendous amounts of manual effort can be saved by incorporating these methods 

in an enhanced sign inventory procedure.  More importantly, safety can be significantly 

improved with less or no exposure to roadway hazards.  In this chapter, a large-scale case study 

was conducted to inventory all signs and assess their conditions on I-285.  The following list the 

major objectives: 

 To conduct a detailed sign inventory and condition assessment on I-285 using the enhanced, 

computer-aided sign data collection procedures; 

 To develop a detailed analysis of traffic sign characteristics, including sign location, 

classification (i.e. MUTCD code) and condition;   

 To identify the spatial distribution of the overhead traffic signs. They are particularly of 

interest to state DOTs because the structural failure of these overhead signs could lead to 

severe roadway hazards; 

 To study the types of sign damages and their causes using calibrated high resolution video 

log images. They are particularly of interest for state DOTs because this information on 

damage types and causes could be used to minimize the sign damage by improving the 

stability of a sign post, treating the ground base of a sign post, etc.  

2. Traffic Sign Characteristics 

This section defines the main traffic sign characteristics that were collected in this study.   

Traffic sign data collection includes two primary steps: inventory and condition assessment.  An 

inventory collects sign locations and attributes, e.g. classification of traffic signs, while condition 

assessment determines the performance adequacy of inventoried signs by identifying damaged 

signs. Sign location, classification, and condition are the key characteristics that must be 

collected.   
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Sign Location: Traffic sign location is defined by three GPS coordinates (i.e. longitude, latitude, 

and elevation) that uniquely define the spatial position.  Extracting the location for each 

individual sign is the most important step for traffic sign inventory.  In this study, WGS84 

geodetic GPS coordinates are used to represent the traffic sign location, which can be flexibly 

converted to a linear referencing system that is used in GDOT.  

Sign Classification: Traffic signs are classified by different traffic sign functions, and sign 

classification leads to different designs, e.g. RX-X as regulatory signs, WX-X as warning signs, 

etc. There are more than 670 traffic signs defined in the MUTCD in three classifications:  

regulatory signs, warning signs, and message signs.  In addition, there could be several sign 

types that only occur within certain states or regions and are assigned internal MUTCD codes. In 

this study, the Signs Chapter of the GDOT’s Foreman's Academy (2008) is used to define sign 

classifications and details the general MUTCD codes and the internal MUTCD codes.    

Sign Condition: Traffic sign condition is represented by the sign's visual defects and the sign’s 

retroreflectivity.  This study used video log images captured during the daytime to identify visual 

defects.  Four categories of poor sign conditions are defined in this study:  post failure, dirty, 

obstructed, and surface failure.  Based on the Signs Chapter of the GDOT’s Foreman's Academy 

(2008), the four categories of poor sign conditions correspond to four maintenance actions 

defined by the Highway Maintenance Management System (HMMS) (Hensing &  Rowshan, 

2005), including straightening, cleaning, vegetation trimming, and replacing.  Figure 3.1 shows 

several examples signs in poor condition in each category.   Appendix I lists all the traffic signs 

in poor conditions and their locations on I-285. 

Overhead Sign: Overhead signs are considered separately from ground-mounted traffic signs.  

Although overhead signs are only a small portion of the whole sign population, the damage to 

these signs and/or their corresponding supports, e.g. panel failure or structural failure, etc., may 

lead to serious roadway hazards, as illustrated in Figure 3.2.   
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    Post Failure    Dirty             Obstructed 

   

Surface Failure 

Figure 3.1 Examples of four categroeis of poor sign conditions 

    

Figure 3.2 Example of overhead sign failure (FHWA 2013) 

Therefore, overhead signs are specially categorized and inventoried in detail.  According to the 

different supporting structures for overhead signs defined in the Signs Chapter of the GDOT’s 

Foreman's Academy (2008), three categories are inventoried:  Sign-Bridge, Cantilever, and 

Other Structures.  Figure 3.3 illustrates these three categories.  Inventorying the detailed 

categories of overhead signs and identifying the spatial locations of these signs will be beneficial 

to the subsequent maintenance or more detailed structure inspection.  Appendix II lists all the 

overhead signs and their locations on I-285. 
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Sign Bridge        Cantilever                          Other Overhead  

Figure 3.3 Examples of the overhead sign categories defined by GDOT 

3. Sensing Data Collection 

In this study, data was collected using the GTSV during May 2013.  Three sequences of video 

log images were captured, covering the left and right sides and the center of the roadway.  Two 

sets of LiDAR data were simultaneously acquired, covering the right side and overhead of the 

road (i.e. the most frequent sign locations).  High-resolution video log images (i.e. 5MP) and 

LiDAR data were calibrated and synchronized so that precise location information could be 

extracted from either data source.  The camera angles and LiDAR scanning orientation were 

configured to cover all the possible sign locations. Figure 3.4 illustrates the coverage of the 

sensing data collection.  In addition, to minimize the occlusion caused by heavy trucks, the 

GTSV was maintained in the out-most lane during the data collection session.   

4. Sign Inventory and Condition Assessment 

Based on the enhanced sign inventory procedure proposed in previous chapters, a semi-

automatic method was applied to inventory signs and assess their conditions. 
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4.1 Statistics of Inventoried Signs 

I-285 is an interstate highway loop encircling Atlanta, Georgia, for 63.98 centerline miles.  

Suburban sprawl has made it one of the most heavily traveled roadways in the United States.  In 

this study, there are 2,969 traffic signs that were inventoried using the proposed approach.   

The majority of the identified signs are message signs that make up 78.17% of the total 

population (2,321 signs). The rest of the population consists of 76 regulatory signs, 333 warning 

signs, and 239 other signs (internal signs in Georgia).  Figure 3.5 shows the distribution of the 

traffic signs on I-285 based on their classifications.  

 

Figure 3.4 Illustration of the coverage of the sensing data collection (including FR – Front 

Right Camera; FC – Front Center Camera; FL – Front Left Camera; BP – Back Pavement 

Camera; FR – Front Right LiDAR; FD – Front Down LiDAR; and BU – Back Up LiDAR ) 
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Figure 3.5 Distribution of traffic sign classifications on I-285 

Among all the identified signs, about 8.49% (i.e. 252 signs) are in poor condition based on the 

definitions in the Signs Chapter of the GDOT’s Foreman's Academy (2008). Appendix I lists all 

the signs in poor conditions and their locations.  Surface failure (58.82%) and post failure 

(28.63%) are the two primary reasons for poor conditions. The rest of the signs are in poor 

condition due to having an obstruction problem (8.24%) and being dirty (4.31%).  Figure 3.6 

shows the distribution of the traffic signs in poor conditions on I-285 based on their damages. 

Three types of sign damages were identified, and their causes are preliminarily studied in this 

research project through close visual inspection of the high resolution video log images, although 

further field inspection and in-depth study are recommended to confirm the damages. The 

possible causes to the three types of sign damages are discussed and summarized in the 

subsequent sections.  
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Figure 3.6 Distributions of traffic signs in poor condition on I-285 (252 signs) 

Among all the inventoried signs, about 21.66% of the signs (i.e. 643 signs) are installed on 

overhead structures, including Sign-Bridge, Cantilever, and Other Overhead.  Appendix II lists 

all the overhead signs and their locations.  More than 50.23% of the overhead signs are installed 

on bridges, while 13.06% of the overhead signs are installed on cantilever structures. The rest of 

the overhead signs (36.70%) are installed either on bridge-mounted structures or butterfly 

structures, categorized as Other Overhead due to the lack of any other specific definition in the 

Signs Chapter of the GDOT’s Foreman's Academy (2008).  Figure 3.7 shows the distribution of 

the overhead signs on I-285 based on their base supporting structures.  

   

Figure 3.7 Distributions of traffic signs installed on overhead structure on I-285 
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Distribution of Signs in 
Poor Conditions on I‐285
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Obstructed Dirty

50.23%

13.06%

36.70%

Distribution of Overhead 
Signs on I‐285

Sign‐Bridge Cantilever

Other Overhead



 

58 

 

4.2 Three Types of Sign Damages and Causes 

This section studies the three types of sign damages by reviewing high-resolution roadway 

images. The detailed locations for these signs are available for planning field inspections and 

maintenance.  Through the visual inspection using the high resolution video log images, some of 

the preliminary damage causes were identified.   Three types of damages, truck gust, dual-post 

support, and post failure, were identified and summarized.  

Damage Type 1 – Truck Gust  

Of the 252 signs in poor condition, 108 signs are identified as being damaged by truck gusts. 

This type primarily includes milepost traffic signs that are mounted on concrete medians.  The 

surfaces of the damaged signs are bent or wrapped parallel to the driving directions, as shown in 

Figure 3.8.  From the video log images, it was observed that although the signs are damaged on 

the median, the median itself doesn’t show any evidence of crash or impact.  While further 

investigation is still required to reveal the cause of such sign damage, the preliminary inspection 

showed that the signs are (probably) damaged by the strong truck gust that is created by fast-

moving trucks.  While the truck passes by the traffic sign, the frontal area of the sign tends to 

bear extra gust loads that can potentially bend the sheeting.  In addition, it was observed that the 

majority of the median-mounted traffic signs are not designed with a metal post.  Instead, one 

end of such traffic sign is mounted on a fixed connection attached to the concrete as shown in 

Figure 3.8, while the whole sign surface stands by the strength of the aluminum sheeting.  Such a 

design may synergize with the truck gusts and facilitate the damage.  Adding a square or u-shape 

sign post may effectively avoid such damage to the median-mounted traffic signs (McGee, 

2010).  
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Figure 3.8 Examples of the damaged signs due to truck gust on median 

Damage Type 2 – Dual-Post 

Of the 252 signs in poor condition, 21 are identified as having dual post damages.  This type 

includes, primarily, the off-ramp signs that are mounted using dual posts to hold multi-panels.  

The dual posts indicate that the sign is supported by two parallel square or u-shaped sign posts, 

while the multi-panel indicates that the surface of the sign consists of multiple, elongated sign 

panels instead of a single panel.  It was observed that the surface of the damaged signs shows 

waviness and unevenness, while the two posts of the damaged signs are no longer parallel to 

each other.  Figure 3.9 shows several examples of such damaged signs. The preliminary 

inspection showed that such damage is caused by the unbalanced vibration of the dual posts, 

which shakes the multi-panels so that the surface becomes wavy and uneven.  The unbalanced 

vibration can be produced by the gusts from the passing vehicles and ground support defects. 

Reinforcing the dual-post using an I-beam steel post with a slip base may effectively avoid such 

damage (McGee, 2010). 
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Figure 3.9 Examples of the damaged signs due to dual-post 

Damage Type 3 – Post Failure 

Of the 252 signs in poor condition, 73 signs are identified as having post failure. This type 

primarily includes traffic signs with incorrect facing due to the sign post failure. The preliminary 

inspection showed that the majority of these sign post failures can be caused by direct impact, 

which deforms the shape of the post, while the rest can be caused by a soft base or poor ground 

support.  Figure 3.10 shows several examples of such damaged signs.  Direct replacement will be 

needed for this damage type to maintain these signs’ visibility during the daytime and nighttime.  

However, if field inspection identifies that the post failure is caused by a soft base, reinforcing 

the sign post with a slip base may also be required to avoid such damage, especially for large 

message sign panels (McGee, 2010; Bligh et al., 2001).  

 

Figure 3.10 Examples of the damaged signs due to post failure 
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5. Summary 

This study thoroughly extracted the detailed traffic sign inventory information (including sign 

location, MUTCD code, and overhead signs) and details sign condition information (visual sign 

conditions).  The enhanced procedure for traffic sign inventory and condition assessment was 

validated as a means to maximize the utilization of the available sensing data and use computer-

aided methods to improve sign inventory productivity.  More importantly, this method greatly 

reduces the danger to engineers by enabling them to take inventory of signs without being 

exposed to roadway hazards, especially on interstate highways and near overhead signs. The 

signs on the 63.98 centerline miles on I-285 (128 survey miles) were collected using the 

enhanced data collection procedure, and their conditions were evaluated based on the Signs 

Chapter of the GDOT’s Foreman's Academy (2008). Detailed statistics were derived to further 

study the key characteristics of the installed traffic signs.   

 On I-285, there are 2,969 signs. The majority of the installed traffic signs on interstate 

highways are messages signs that convey direction, destination, and service information 

(2321 signs, 78.17%). Only a limited number of warning signs and regulatory signs are 

installed to indicate hazardous conditions or regulate drivers’ behavior. 

 A large percentage of installed traffic signs are mounted on overhead structures on interstate 

highways (643 signs, 21.66%). These overhead structures hold larger and heavier traffic sign 

panels that are different from normal sign sheeting. Therefore, the integrity of these signs is 

critical and requires more frequent inspection and maintenance. They are divided into three 

categories and inventoried with their location (coordinates), including Sign-bridge (323 

signs, 50.23%), Cantilever (84 signs, 13.06%), and Other Overhead, including butterfly and 

bridge mount (236 signs, 36.70%). 

 There are 252 signs in poor condition (255 poor sign condition cases with the four categories 

of poor sign conditions) that require sign maintenance action based on the sign condition 

assessment in GDOT Foreman’s Manual, including: surface failure (150 cases, 58.82%), post 

failure (73 cases, 28.63%), obstructed (21 cases, 8.24%), and dirty (11 cases, 4.31%). 

 Additional effort was conducted to study the causes of three types of sign damages using the 

calibrated high-resolution video log images. Through the visual inspection, not only the 

precise locations of the damaged signs were extracted, but also the damages were 
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preliminarily assessed. The most frequently occurring sign damage type is surface failure on 

milepost signs due to truck gusts. They are located on the concrete barriers, on roadsides, or 

on medians.  These signs are damaged by the strong truck gusts that are created by fast- 

moving trucks. Another sign type suffering frequent damage is made up of exit signs that are 

damaged due to the instability of their dual posts. They are located at the interstate exits. The 

inspection shows that the signs are damaged by the unbalanced vibration and twisting of the 

dual posts. In addition, post failures also frequently occur due to direct crash impact or soft 

bases. The only type of overhead sign that is damaged is D3-1 (i.e. street name sign) 

mounted on bridges.  The majority of D3-1 signs are damaged due to surface failure (i.e. 

color fading and erosion).  Figure 3.11 shows an example of a damaged D3-1 sign. 

 

Figure 3.11 Example of a damaged D3-1 street name sign 

 The coordinates (latitude and longitude) of each sign were collected and visualized on a GIS 

map. Tables containing mile points were also generated for signs with poor sign condition 

that require maintenance action and for overhead signs that require frequent monitoring. The 

image for each sign is also collected to provide visual cues for engineers before they go to 

the field. GDOT can use this sign data to effectively create a sign maintenance/replacement 

work plan. 

The following are the recommendations for implementing the findings of this study:  

 Based on the I-285 study, it has been demonstrated that the proposed enhanced sign data 

collection procedure is very promising; it is a cost-effective means to collect sign data and 

assess sign condition, especially on the hazardous interstate highways with heavy traffic.  

With the successful pilot study on I-285, it is recommended that the signs on all Georgia’s 
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interstate highways (more than 2,500 surveyed miles) be inventoried using the enhanced sign 

data inventory procedure. 

 The overhead signs have high potential risk. With the research outcomes, these signs on I-

285 were identified and can be inventoried for routine monitoring to ensure their integrity 

and safety, and timely maintenance.  

 For the signs with poor condition, whose locations were identified in this study, the proper 

sign maintenance actions can be taken effectively with the derived sign inventory.  

 Although the preliminary study of three types of sign damages was conducted, further field 

inspection and in-depth study are recommended to confirm the causes of the damages and to 

propose the adequate improvement to minimize the sign damage. 
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Chapter 4 Sign Retroreflectivity Condition Assessment Using 

Mobile LiDAR – A Feasibility Study 

1. Introduction 

Traffic sign retroreflectivity plays a critical role in nighttime driving safety. The new MUTCD 

requires that the minimum retroreflectivity of traffic signs must be maintained by each state 

DOT. To do so, state DOTs commonly use manual assessment methods, using either nighttime 

visual inspection or retroreflectometer measurement. However, these manual methods have 

limitations. The nighttime visual inspection method is subjective due to the inconsistency of 

human perception, and the retroreflectometer measurement method is very time-consuming due 

to the frequent stops for contact measurement. Other management methods, e.g. blanket sign 

replacement, are also used by state DOTs, but are potentially costly because they may blindly 

remove many traffic signs in good condition. In recent years, several automatic traffic sign 

retroreflectivity condition assessment methods using image processing have been proposed. 

Survey vehicles are equipped with special artificial lighting devices and calibrated video cameras 

to assess signs' retroreflectivity condition by assessing the intensity response from the cameras to 

an artificial lighting source. Some of the proposed methods cannot provide results as 

satisfactorily as the current manual method (Smith & Fletcher, 2001), and other methods are yet 

to be validated (Retterath & Laumeyer, 2008; 2011). The primary challenges for these methods 

are handling the sensitivity of the image quality due to image saturation, interference from the 

ambient lighting, and difficulties in acquiring accurate camera parameters. None of these 

methods have been implemented by state DOTs.  Hence, there remains an urgent need for a 

method that reliably and cost-effectively assesses the traffic sign retroreflectivity condition.  

Because of the advancements in emerging light detection and ranging (LiDAR) technology (i.e. 

improvements in data acquisition frequency and reflectance measurement accuracy), LiDAR 

systems can acquire point cloud data for individual traffic signs in high resolution and with 

precise retro-intensity measurement. To develop an automatic traffic sign retroreflectivity 

condition assessment that can operate at highway speed, this study further investigates the 

potential to substantially improve traffic sign assessment by exploring the retro-intensity 
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distribution for the traffic signs associated with LiDAR point clouds. The study presented in this 

chapter is motivated by the urgent needs of state DOTs and the present-day abilities to meet 

those needs by utilizing the advancement of the emerging LiDAR and computer vision 

technologies.  

This chapter is organized as follows. This section presents the background and the motivation of 

the study. Section 2 presents the current traffic sign retroreflectivity condition assessment 

method in state DOTs and the state-of-the-art research. Section 3 briefly presents the principle of 

the LiDAR-based traffic sign retroreflectivity condition assessment method and the experimental 

test to demonstrate the feasibility of the tested method. Section 4 presents conclusions and 

recommendations.  

2. Literature Review 

This section presents a literature review of the current practice in state DOTs for traffic sign 

retroreflectivity condition assessment, including nighttime visual inspection, retroreflectometer 

measurement, and blanket replacement. In addition, with the advancement of computer vision 

technologies, some image-based traffic sign retroreflectivity condition methods in previous 

studies are discussed. This section also presents the state-of-the-art research in detail. Finally, 

based on the literature review, the identified research needs for this study are presented.  

2.1 Current Practice 

Traffic sign retroreflectivity is critical for nighttime safety and determining the adequacy of the 

traffic signs' reflectance during nighttime is one of the most important parts in a state DOT's 

traffic sign management system to. To address this important issue, FHWA has developed 

minimum traffic sign retroreflectivity condition standards and mandated all transportation 

agencies implement a plan for meeting those standards. State DOTs are actively searching for a 

cost-effective approach for traffic sign retroreflectivity condition assessment by improving their 

existing methods or adopting new methods suggested by the MUTCD. At present, state DOTs 

use three primary methods for retroreflectivity condition assessment, including nighttime visual 

inspection, retroreflectometer measurement, and management methods.  
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 Nighttime visual inspection 

Nighttime visual inspection is a manual process that requires an investigator visually assess 

the traffic sign retroreflectivity condition at night using “trained eyes” (FHWA, 2009). 

Because it is easy to conduct, most transportation agencies use nighttime visual inspection as 

their primary method to determine the traffic sign retroreflectivity condition. Although the 

nighttime visual inspection is widely used by state DOTs, the assessment results can be 

subjective and inconsistent from one investigator to another. Hawkins and Carlson (2001) 

conducted a field test using 50 traffic signs removed from the roadside. Sign investigators in 

the test identified 26 unacceptable signs, but only one traffic sign was considered 

unacceptable using a retroreflectometer with FHWA standards. 

 Retroreflectometer measurement 

Retroreflectometer measurement is a manual process that requires a field engineer to conduct 

contact measurements for each traffic sign using a retroreflectometer. The American Society 

for Testing and Materials (ASTM) has provided a standard measurement procedure using the 

retroreflectometer, which mimics the traffic sign brightness as seen by a sport utility vehicle 

(SUV) driver at a distance of 200 meters. A minimum of four measurements for each 

reflective color of the traffic sign are required. The average of the readings for each reflective 

color will be compared with the MUTCD standard to determine the retroreflectivity 

condition. The retroreflectometer can provide a quantitative and consistent measurement to 

determine the traffic sign retroreflectivity for each measurement point. Several transportation 

agencies are using this method, including LaDOTD, the Indiana department of 

Transportation (InDOT), the Virginia Department of Transportation (VDOT), Hillsborough 

County, Florida, etc. However, as the retroreflectometer measures traffic sign 

retroreflectivity by contacting the traffic sign surface, the investigator needs to physically 

approach each traffic sign and conduct the survey. This method is time-consuming and 

costly. In addition, as the average of multiple measurements (typically using four points) is 

used to represent the overall retroreflectivity condition for each reflective color, the results 

can be over- or under-estimated if the traffic sign is non-uniformly deteriorated (Remias et 

al., 2011). 
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 Management Method 

Management methods include expected sign life, blanket replacement, and control signs. 

These three methods share similar procedures that blindly replace all the traffic signs with 

similar characteristics, e.g. installation time, sign sheeting and color, etc. In this case, 

individual retroreflectivity condition assessment is not required. Many transportation 

agencies are planning to implement this method to save the effort and cost of individual 

traffic sign condition assessment. For example, the city of Phoenix is performing the blanket 

replacement method to replace more than 28,000 traffic sign along a major corridor in the 

city (Moreno & Cook, 2010). However, as the traffic signs are blindly replaced based on 

limited criteria, this method could potentially replace many traffic signs with good 

retroreflectivity that do not need to be replaced, which wastes money and resources. 

2.2 State-of-the-Art Research 

To improve the efficiency of the traffic sign condition assessment process, some methods have 

been proposed to assess the traffic sign retroreflectivity condition automatically by using video 

log images. The correlation between the image intensity and the traffic sign retroreflectivity is 

the key component. However, there are few studies exploring the correlation. Most of the studies 

are based on empirical results using limited traffic sign samples. Siegmann et al. (2008) 

systematically developed the fundaments between the image intensity and the retroreflectivity 

from a photometrical perspective. Different factors, including camera aperture, camera exposure 

time, surface materials and colors of traffic sign, the distance from the light source to the surface, 

and the incident angle, etc., were comprehensively studied. A close form equation between 

retroreflectivity and the studied factors was derived. The equation was validated using a circular 

speed limit sign. This equation can be applied to correlations between the image intensity and the 

retroreflectivity under different camera configurations, e.g. camera aperture, camera exposure 

time, etc., and different data collection parameters, e.g. distance, incidence angle, etc.  

Using correlations established between the image intensity and the retroreflectivity, several 

image-based traffic sign retroreflectivity condition assessment systems have been developed. A 

Sign Management and Retroreflectivity Tracking System (SMARTS) van was first developed by 

FHWA in 1999, as shown in Figure 4.1(a). The pilot test was conducted by Alaska DOT (Smith 
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& Fletcher, 2001). An external light-emitting diode (LED) was used to provide lighting to a 

traffic sign with known luminance to mimic a vehicle’s headlight, while a single camera was 

used to collect video log images of the illuminated traffic signs. However, the results from the 

SMARTS van demonstrated that the image-based results had poor correlations with the 

retroreflectometer measurement results. Facet Inc. and Mandli® Communications Inc. developed 

a similar system called RetroView. External infrared lighting was used instead of an LED to 

avoid the impact from the ambient lighting. Two camera systems were used to separately collect 

low and high levels of intensity (Retterath & Laumeyer, 2008, 2011), as shown Figure 4.1(b). 

Several pilot tests have been conducted by the Tennessee Department of Transportation (TDOT) 

and the Texas DOT (TxDOT) using the RetroView system. The results indicate that the system is 

potentially a cost-effective method for traffic sign condition assessment. In Europe, the VISUAL 

Inspection of Sign and panEL (VISUALISE) system was developed by Gonzales et al. (2011). 

The VISUALISE system was tested on 500 traffic signs in Spain, and 91% of the traffic signs 

were correctly assessed. To avoid ambient lighting, the system was operated during the 

nighttime. The primary reasons of some erroneous assessments included inclined traffic signs 

and small traffic signs.  

 

              (a) FHWA SMARTS system      (b) Mandli/Facet RetroView system 

Figure 4.1 The Outlooks and the Schematic Flow of the Systems 

Although some prototype systems have been developed, limited validations have been conducted 

for these systems. NCSU’s 2008 nationwide survey of different vendors providing 

comprehensive roadway appurtenance acquisition reveals that there are no vendors supplying 

data or services for traffic sign retroreflectivity condition assessment (Findley et al., 2011). No 

state DOT has adopted any mobile systems for traffic sign retroreflectivity condition assessment. 
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In summary, in previous studies, there have been a few attempts to develop a mobile, image-

based traffic sign retroreflectivity condition assessment method. However, several challenges 

have been identified for the image-based method, including: 1) based on the study by Siegmann 

et al. (2008), many parameters, such as the distance and incidence angle from camera to targeted 

sign, are needed to establish a reliable correlation between the image intensity and 

retroreflectivity.  However, it is difficult to acquire these parameters because they change from 

one location to another location; 2) the image-based method needs to know the luminance of the 

external lighting, and to cope with image saturation and ambient lighting effects, which are 

difficult to achieve.  Therefore, there is a need to explore alternative methods to cost-effectively 

conduct traffic sign retroreflectivity condition assessment.  

2.3 Research Need 

This sub-section summarizes the findings from the literature review. It is identified that the 

methods used in the current practice of state DOTs are primarily manual processes. These 

methods can be subjective, time-consuming, and costly. A management method is also used by 

state DOTs, i.e. blanket replacement. Although the cost for individual assessment for each traffic 

sign can be saved, the methods increases costs when it needlessly replaces traffic signs in good 

conditions. With the FHWA-mandated implementation time of minimum traffic sign 

retroreflectivity approaching, a reliable and cost-effective traffic sign retroreflectivity condition 

assessment method is being sought by state DOTs. There are some studies developing image-

based automatic traffic sign retroreflectivity condition assessment methods and systems. 

However, all of these systems are still in the research stage and lack validation. In addition, these 

methods pose many image-inherent challenges that might affect the reliability of the methods. In 

summary, there is an urgent need to explore an alternative method for a reliable and cost-

effective retroreflectivity condition assessment.  

3. Assessment of the LiDAR-Based Sign Retroreflectivity Condition 

Assessment Method 

Retroreflectivity is the most critical attribute of a traffic sign for nighttime visibility. It is defined 

as the ratio of the luminance that is redirected from a sign’s surface to the luminance originated 

from the vehicle headlight (ASTM D4956-11a). A LiDAR system collects the retro-intensity 
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values in a way similar to the measurement of traffic sign retroreflectivity. A retro-intensity 

value is acquired with each LiDAR point that measures the ratio of the energy redirected from 

the object to the energy emitted from the LiDAR sensor. Hence, there is a possible correlation 

between the retro-intensity values and the traffic sign retroreflectivity conditions. Such a 

correlation can potentially be used to conduct an automatic traffic sign retroreflectivity condition 

assessment. The principle of the tested LiDAR-based sign retroreflectivity condition assessment 

method (Tsai & Ai, 2013) is to correlate the LiDAR retro-intensity values with the traffic sign 

retroreflectivity condition (i.e. retroreflectometer readings, etc.) using the population of the retro-

intensity values. Computer vision technology is applied to assist the LiDAR-based method by 

differentiating traffic sign colors and associate the color information with each of the LiDAR 

point.   

The objective of this experimental test was to demonstrate the feasibility of the LiDAR-based 

sign retroreflectivity condition assessment method. In the experimental test, the actual 

retroreflectivity of traffic signs was collected in a community in Savannah, Georgia. Considering 

the challenges of manually assessing a large number of traffic signs, a small group of 10 Type I 

stop signs were specifically selected for the experimental test. Different installation years of the 

traffic signs were considered during the selection to introduce a possible variety of the sign 

retroreflectivity conditions. The LiDAR point cloud data was acquired using the GTSV that can 

collect the data at highway speed.  

3.1 Preliminary Results 

To evaluate the performance of the tested method on the selected traffic signs, both the nighttime 

visual inspection and the retroreflectometer measurement were conducted for ground truths at the 

same time as the LiDAR data collection. The outcome of the nighttime visual inspection is a 

two-level assessment based on the perception of the investigator, i.e. PASS and FAIL. The 

outcome of the retroreflectometer measurement was a four-point average of the retroreflectivity 

measurement values using a handheld retroreflectometer in compliance with ASTM standard 

(E1709-09). Each measurement point was randomly selected at each quadrant of the sign. The 

average value was compared with the MUTCD standard for the minimum retroreflectivity. If the 

average was greater than the minimum retroreflectivity requirement, the retroreflectivity 

condition was identified as PASS; otherwise, it was FAIL. Both of the outcomes were used as 
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the ground truths to evaluate the performance of the tested method. Given the small number of 

the tested stop signs, strong conclusions from these results should not be drawn. Table 4.1 shows 

the assessment results from the tested method and the established ground truths using both the 

nighttime visual inspection and the retroreflectometer measurement. The threshold value of 

0.767 derived from the tested method was used for this test. A traffic sign with a greater median 

retro-intensity value than 0.767 is considered as the PASS condition, while with a less median 

value is considered as the FAIL condition.  

The assessment results from the tested method are consistent with the nighttime visual inspection 

results, except one of the results was inconsistent with the retroreflectometer measurement 

results: Sign 2, as shown in Table 4.1. By retrieving the original four retroreflectometer 

measurement values for Sign 2, it was  found that there is one value that is significantly smaller 

than the other three, i.e. 10, 7, 9, and 1. Although the four retroreflectometer measurements were 

taken at each quadrant of the sign, the number of measurements was still not sufficient to 

indicate the overall retroreflectivity condition of the whole sign due to water damage. The result 

can be easily impacted when the retroreflectivity of the sign is not uniform.  

Table 4.1 Test Results for the 10 Type I Stop Signs on Field 

ID Tested Method  
Results (≥0.767) 

Visual Inspection 
Results 

Retroreflectometer  
Measurement Results 
(≥7) 

1 0.763 / FAIL FAIL 5.3 / FAIL 
2 0.776 / PASS PASS 6.8 / FAIL 
3 0.745 / FAIL FAIL 4.0 / FAIL 
4 0.741 / FAIL FAIL 2.3 / FAIL 
5 0.712 / FAIL FAIL 2.0 / FAIL 
6 0.753 / FAIL FAIL 5.1 / FAIL 
7 0.755 / FAIL FAIL 4.3 / FAIL 
8 0.760 / FAIL FAIL 5.3 / FAIL 
9 0.682 / FAIL FAIL 2.0 / FAIL 
10 0.787 / PASS PASS 19.3 / PASS 

3.2 Benefit of LiDAR-based Assessment Method 

As presented in previous sub-section, the LiDAR-based method is population based that can 

realistically reflect the overall retroreflectivity condition of a traffic sign, while the 

retroreflectometer measurement method is only a sample-based method using only four 
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measurement points. To further investigate the disparity between the assessment results from the 

tested method and the retroreflectometer measurement (i.e. sample-based method), an additional 

Type I stop sign acquired from GDOT was tested in the lab. Figure 4.2(a) shows the nighttime 

image of the tested stop sign. The sign was non-uniformly deteriorated due to water damage. 

Several blocks of the sign have much lower retroreflectivity than the rest of the sign.  

    
   (a)                                         (b) 

Figure 4.2 Images of the Type I Stop Sign in the Lab 

In this in-lab test, more retroreflectometer measurements were acquired for a single sign in the 

well-controlled lab environment. To obtain a larger number of retroreflectivity measurements, 

144 sampling points were measured using a retroreflectometer for the tested stop sign. The 

measuring pattern is illustrated in Figure 4.2(b), where the offset between the adjacent sampling 

points was approximately 2 in. Only the samples from the red color were tested. To simulate the 

four-point measurement using retroreflectometer in practice, one point from each quadrant was 

randomly selected, and the average of the four retroreflectivity values was used to represent the 

condition of the tested sign. Four runs of the random selections were conducted for the sign. In 

addition, the average of retroreflectivity values from all the measurement points was also 

calculated for each sign to compare with the four-point measurement results. Using the tested 

method, 322 retro-intensity values were acquired from the LiDAR system for the tested stop 

sign. We applied the same threshold of retro-intensity value as in the test on field, i.e. 0.767. 

Table 7.2 shows the results.  

Table 4.2 Test Result for the Two Type I Stop Signs in the Lab 

Tested Method Results 
Median (≥ 0.767) 

Retroreflectometer Measurement Results 
Mean (≥7) Run 1 Run 2 Run 3 Run 4 

0.744 / FAIL 4.5 / FAIL 10.0 / PASS 2.0 / FAIL 2.5 / FAIL 4.0 / FAIL 
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From Table 7.2, it is observed that the retroreflectometer measurement results using the average 

value of all the measurement points are consistent with the results using the tested method. 

However, the assessment result from Run 1 of the four-point measurement is different from other 

runs. The average is much higher than the rest of the runs. To further identify the different 

results, we investigated the distribution of the retroreflectivity from the retroreflectometer 

measurement. 

 
Figure 4.3 Distribution for the Retroreflectivity Measurement  

As shown in Figure 4.3, the majority of the retroreflectivity values are below 7, and the average 

of all the measurement points is 4.5, which indicate a FAIL condition. However, using the four-

point measurement, there was a chance to select the points with a large retroreflectivity value, so 

that the average of the four values overestimated the true condition of the sign. For example, as 

shown in Figure 4.3, Run 1 (i.e. the red arrows) includes measurement values of 10 and 21, 

which only appear once or twice among all the 144 measurements. The location of the 

measurement points (i.e. red dots) for Run 1, as shown in the image, also verifies that the 

measurements were incidentally conducted where the retroreflectivity condition is good. In 

contrast, if all the measurement points were used, the average can better reflect the true 

retroreflectivity condition for the whole traffic sign. Nevertheless, it is not feasible to manually 

measure more than 100 points for each traffic sign using a retroreflectometer. Therefore, the 

tested method can serve as a better alternative to reliably reflect the true retroreflectivity 
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condition for each sign, since the tested method assesses the traffic sign retroreflectivity 

condition using the whole population of the sign-associated LiDAR points.  

At the current stage, the traffic signs are manually extracted and the LiDAR point cloud for each 

traffic sign color is manually clustered, so no assessment on the time saving was conducted. 

However, it is expected that the processing time will be dramatically reduced, comparing with 

the current practices using nighttime inspection or retroreflectometer measurement, when all of 

the automatic algorithms within the proposed methods are implemented, 

4. Conclusions and Discussions 

Traffic sign retroreflectivity condition is critical for nighttime driving safety. State DOTs have an 

urgent need for a cost-effective traffic sign retroreflectivity condition assessment method to meet 

the requirement from the MUTCD. This study tested a potentially cost-effective method for 

assessing the traffic sign retroreflectivity condition using mobile LiDAR and computer vision. 

Ten actual Type I stop signs collected in a community in Savannah, Georgia were tested to 

demonstrate the feasibility of the proposed method. The ground truths were established using 

both nighttime visual inspection and retroreflectometer measurement. The retroreflectivity 

condition assessment results using the proposed method are consistent with all of the nighttime 

visual inspection results; they match 90% of the retroreflectometer measurement results in 

differentiating good and bad sign retroreflectivity conditions. Using the developed mobile-

LiDAR based method, coupled with the integrated GTSV, it is promising that the traffic sign 

retroreflectivity condition assessment can be conducted cost-effectively at highway speed.  

The following are recommendations for future research: 

 Experimental tests using more Type I stop signs is recommended to further validate the 

performance of the proposed method and the determined adequate retro-intensity threshold 

value.  

 Experimental tests using other types of sheeting and other colors are recommended to further 

validate the performance of the proposed method. 

 The processing time and cost-effectiveness is recommended for study to quantify the benefits 

for state DOTs using the proposed method.  
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Chapter 5 A Prototype GIS-Based Sign Management System 

1. Introduction 

As discussed in Chapter 1, GIS is an excellent platform for integrating different kinds of data 

sources into an effective transportation asset management system. Spatial data, such as GIS 

maps, sign locations, roadway image locations, and non-spatial data, such as sign attributes and 

video log images, can all be integrated on a GIS platform. Through a global coordinate system, 

e.g. WGS84, the roadway assets can be integrated with base GIS maps and linked through the 

use of a Linear Reference System (LRS). An integrated GIS-based management system would 

enable transportation agencies to efficiently manage their roadway assets. In GDOT, a 10-digit 

RCLINK is used as an LRS to integrate different kinds of data sources, which is composed of 1-

digit route type code, a 3-digit county code, a 4-digit route number, and a 2-digit route suffix 

code. GDOT uses this LRS in its pavement surface condition evaluation, referencing each 

pavement segment and project by its starting and ending milepoints. Further integration of GIS-

based information, such as a comprehensive traffic sign asset management system, will enhance 

overall roadway management and maintenance.  

In this research project, traffic signs are used to demonstrate the application of a prototype GIS-

based asset management system.  A sign data management tool was developed, utilizing GIS 

technology, integrating both spatial data (global coordinate system and LRS) and non-spatial 

data (sign condition, position, type and video image) to benefit the sign management process. 

The following section introduces the key functions and the data preparation for a new sign 

management application.  After that, the major workflow was illustrated using a case study on I-

285.  Finally, the benefits and future potential of this application were discussed.  

2. Development of a GIS-Based Sign Inventory Inspection Tool  

2.1 Data Preparation and Software Environment Set Up 

The application requires data to be collected and stored in a geo-database.  And, the ESRI 

ArcMap 10.1 software environment also needs to be set up for the application to function 

properly. 
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 Data Preparation 

The sign video log image data are collected using the GTSV equipped with multiple high 

definition cameras, and each image comes with accurate GPS location.  The ones with signs are 

extracted through the process of sign data inventory as introduced in Chapter 2 along with their 

conditions, positions, and MUTCD codes.  Then all the sign information are consolidated into a 

geo-database file.  Each road has its own table in the database, and each row in the database 

represents a single sign. Except for a one-time loading data at the beginning of the work flow, no 

additional set up is needed within ArcMap 10.1.  

 ArcMap 10.1 Set Up 

After installation of the application, the user needs to make sure the tool appears on the ArcMap 

toolbar. To do this in ArcMap, click on “Customize” -> “Customize Mode…”, and the 

Customize window appears as shown. In categories, select “SignManageTool,” then drag the 

“Sign tool button” to the toolbar (see Figure 5.1). 

 

Figure 5.1 ArcMap Customize Window 
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2.2 Major Functions 

The following introduce some major function in the developed GIS-based application. 

 Sign Query 

The tool provides several type of filters that the user can choose from or combine multiple of 

them (see Figure 5.2). The available filters are as follows:  

1) Sign conditions: All / Good / Post failure / Obstructed / Surface failure 

2) Sign positions: All / Normal / Cantilever / Sign-bridge / Other overhead 

3) Sign types: MUTCD codes and GDOT sign types. 

The queried results will show up in the result table with the condition description, position 

information, RCLINK and milepoint. The user can also double click each column header to sort 

the results according to the selected field, which would be handy for a large query. The total 

number of qualified signs will show up in the bottom text box. 

 Sign Statistical Summary 

The tool also provides overall statistics and reporting functionality (see Figure 5.3). For each 

road, the following statistics would be calculated to give the big picture: 

1) Total number of signs 

2) Total number of dirty signs 

3) Total number of post failure signs 

4) Total number of obstructed signs 

5) Total number of cantilever signs 

6) Total number of sign-bridge signs 

7) Total number of overhead signs 

And three types of charts can be made： 

1) Distribution of top 10 frequent signs 

2) Distribution of damage types 

3) Distribution of overhead positions 
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Figure 5.2 Sign Query Interface 
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Figure 5.3 Sign Summary Interface 

 Individual Sign Inspection 

After the query function returns all the result sign items, the user could double click on a row to 

open the individual sign information window. All the data associated with the selected sign 

would show as a table in the window, along with the video log image.  The map would re-center 

at the selected sign at the meantime, making it easier to locate the sign position (see Figure 5.4). 
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Figure 5.4 Individual Sign Information Window 

3. A Case Study on I-285  

For the example, sign data from 2,969 signs on I-285 are inventoried in the table, as shown in 

Figure 5.5:  
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Figure 5.5 I-285 Sign Data Table 

Assume what is of interest is all D2 and D3 signs.  Select the sign types in the checkbox list, and 

select “All” for condition and “All” for Position. A total of 147 signs are populated into the result 

table (see Figure 5.6).  From the result, it can be seen that the sign with id 3,903 is classified as 

“Other overhead.”   To further check what type of overhead is it, after double clicking on the 

row, an info window pops out. From the video log picture, it is clear that the sign is attached to a 

bridge, as shown in Figure 5.7. 
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Figure 5.6 Query Results 

 

Figure 5.7 Individual Sign Info Window 
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4. Summary  

The sign management tool we developed integrates spatial data with non-spatial data of signs 

and provides essential functionality for the common tasks in sign management. The underlying 

GIS data structure further enables effective data management and intuitional visualization. Such 

a tool would be very useful for the decision-making process in sign management and 

maintenance.  In the future, more functions, such as condition history reporting for signs and 

condition prediction based on the analysis, are suggested for further implementation.    
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Chapter 6 Rut Measurement and Isolated Rut Detection 

This chapter presents the research results for network-level rut depth measurement and isolated 

rut identification using the 3D laser technology. 

1. Literature Review 

Rutting is a well-known asphalt pavement distress that affects pavement structure integrity and 

driving safety (Kamplade, 1990; Start et al., 1998). It is the permanent longitudinal depression 

that forms due to traffic loadings in the wheel paths of a road. Rut depth is commonly used to 

indicate the level of rutting severity.  

1.1 Rutting Survey Protocols 

Currently, pavement rutting surveys are carried out by transportation agencies for network-level 

pavement maintenance and rehabilitation. However, different protocols have been adopted by 

different transportation agencies. The following briefly summarizes the protocols applied in 

federal and several state Departments of Transportation (DOTs):  

 LTPP Rut Depth Measurement (FHWA, 2003) 

For Specific Pavement Studies (SPS)-3 only, the maximum rut depth measured with a 1.2-m 

straightedge is recorded to the nearest millimeter at an interval of 15.25 m for each wheel 

path. For all other LTPP sections, transverse profiles are measured with a Dipstick® profiler 

at an interval of 15.25m.  

 Georgia Department of Transportation (GDOT) Rut Depth Measurement (GDOT, 2007) 

GDOT performs an annual survey of pavement surface condition, including rutting, on its 

18,000 centerline miles of state highways. The entire pavement network is divided into 

segments for the survey purpose. Each segment is typically one mile long. During the survey, 

a rater first drives over the entire segment to examine the general pavement condition and 

then identifies the representative 100ft. sample section. A walk-through survey is then 

performed on each representative sample section.  
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As one of ten types of predefined pavement distresses, the average rut depth for the left and 

right wheel path within the100 ft. sample section is recorded to the nearest 1/8 in. If the rut 

depth is less than 3/8 in., the rater will estimate it; if the rut depth is 3/8 in. or greater, actual 

measurement, made by using a straightedge, is required. Rut depth measurement will not be 

taken from locations where potholes, wide cracks, or loss of section exists. The deduct values 

for rutting are listed in Table 6.1. According to the treatment criteria in GDOT, a rut is 

usually treated with surface treatments, such slurry seal, if its depth is less than 1/4 in.; if its 

depth is between 1/4 in. and 3/8 in., micro seal or level and overlay is applied; if its depth is 

greater than 3/8 in., mill and inlay are used. 

Table 6.1 Deduct Values for Rutting in GDOT Protocol 

Depth (1/8 in.) 0 1 2 3 4 5 6 7 8 

Deduct 0 2 5 12 16 20 24 24 24 
 

 Oregon Department of Transportation (ODOT) Rut Depth Measurement (ODOT, 2010) 

ODOT manually rates its highway network every 0.1 mi, except that the rut depths for both 

wheel tracks are automatically measured using a 5-point laser system mounted on a class 1 

high speed profilometer. The laser system measures rut depth at 6 in. intervals and provides 

the average rut depth and standard deviation for each wheel track for every 0.1mi. This 

automated rut depth measurement is conducted separately from the manual crack survey. The 

rut depth measurements are then categorized into four severity levels: zero (rut depth 

between 0 and 1/4 in.), low (rut depth between 1/4 in. and 1/2 in.), moderate (rut depth 

between 1/2in. and 3/4 in.), and high (rut depth equal to or greater than 3/4 in.). 

 Pennsylvania Department of Transportation (PennDOT) Rut Depth Measurement (PennDOT, 

2010) 

PennDOT adopts the ARAN to automatically collect pavement condition data. The 

evaluation section is typically 0.5 mi long. Within each evaluation section, the rut depth 

measurements are taken at an interval of no greater than 30ft. Then, each measurement is 

assigned to one of the three severity levels. They are low (rut depth between 1/4 in. and 1/2 
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in.), medium (rut depth between 1/2 in. and 1 in.), and high (rut depth equal to or greater than 

1 in.). After that, the length for each severity level is recorded and reported for each 

wheelpath. Table 6.2 summarizes the definitions of rutting severity levels in ODOT and 

PennDOT. 

Table 6.2 Rutting Severity Levels Defined by ODOT and PennDOT 

Severity Level Zero Low Medium High 
ODOT < 1/4 in. ≥ 1/4 in. & < 1/2 in. ≥ 1/2 in. & < 3/4 in. ≥ 3/4 in. 

PennDOT < 1/4 in. ≥ 1/4 in. & < 1/2 in. ≥ 1/2 in. & < 1 in. ≥ 1 in. 

1.2 Rutting Survey Methods 

Some transportation agencies use manual methods, such as the straightedge method, to measure 

the rut depth. However, the manual method is time-consuming, labor-intensive, and dangerous, 

especially on highways with high traffic volume. Thus, automated methods, e.g., the point-based 

rut bar systems, have been developed to gradually replace the manual method.  

A point-based rut bar system utilizes several laser sensors to profile the pavement surface along 

the driving direction and then uses the collected data to calculate the rut depth along the 

transversal direction. According to a survey conducted in 2003 (see Table 6.3) (McGhee, 2004), 

most transportation agencies (46 out of 56 responding transportation agencies from both U.S. 

and Canada) measured rut depth using point-based rut bar systems. The number of sensors used 

in current systems varies from 3 to 37. Thirty-two agencies were equally divided over the 3-point 

and 5-point rut bars; another 14 agencies adopted a rut bar with 7 to 37 sensors. Figure 6.1 shows 

the configuration of a 5-point rut bar system. Usually, a rut bar system is limited to being no 

longer than 3.0m for the sake of survey safety. To cover the full-lane width (typically 12ft., or, 

3.6 m), the two sides of a rut bar system are mounted with point lasers that are tilted to some 

angle in the vertical direction as illustrated in Figure 6.1.  

Besides point-based rut bar systems, INO in Canada developed a Laser Rut Measurement System 

(LRMS) to measure the rutting. This system consists of two laser profilers; each covers a 2m 

width and collects 640 laser points per transverse profile. This device has much higher resolution 

than the point-based rut bar systems. It can operate at a speed up to 100km/h. Its depth accuracy 

is +/-1mm. However, this system sheds the laser light onto the road surface at a small angle. The 
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transverse profile collected is different from the one collected when the laser is shooting straight 

downward. It may potentially overestimate the rut depth, especially for severe rutting. More 

recently, Li et al. (2010) from the University of Texas at Austin developed a real-time 3D 

scanning system for pavement distortion inspection. Similar to the LRMS, the system is built on 

the triangulation principle. However, the laser line is aimed straight downward. The system 

specifications are shown in Table 6.4. This system has a higher scan rate than LRMS.  

 

 

Figure 6.1 Configuration of a 5-point Rut Bar System (Wang, 2005) 

 
Table 6.3 Survey in 2003 (McGhee, 2004) 

Automated Survey System  3-point 5-point 7-point to 37-point 
Number of Highway Agencies 16 16 14 

 

1.3 Rutting Survey Report Methods 

For network-level and project-level rutting surveys, the continuous rut depth measurements are 

not convenient for engineering use. Instead, different aggregation methods used on the 

continuous rut depth measurements are applied in different transportation agencies.  As shown in 

Table 6.5, the sampling interval varies among different state transportation agencies. The 

smallest sampling interval is 6 in., applied in ODOT. The typical aggregation unit is 0.1 mi for 

state agencies in the U.S. Both the Austroads and the Quebec Ministry of Transportation (MTQ) 

aggregate the rut depths for every 100 m section. Statistical indicators, including average and 

maximum rut depth, are reported. PennDOT and Texas DOT (TxDOT) report the linear 

percentages of different severity levels (zero, low, medium, and high) of rutting within the 

aggregation unit. 
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Table 6.4 Specifications for Scanning Laser Systems 

 LRMS Real-time 3D Scanning System 
Number of sensors Two profilers  One projector and two cameras 

Sample points 640 points/profile/profiler 1024 points/ profile/camera 
Scan width 2m/profiler 1.83m/camera 

Transverse resolution 3mm 1.79 mm 
Depth resolution -- 2 mm 
Depth accuracy ±1mm -- 

Maximum scan rate 30 or 150 profiles/s 200 lines/s 
Maximum vehicle speed 100km/h 112 km/h 

Profile spacing 509 or 102 mm @ 55 km/h 76mm @ 55 km/h 

 

Table 6.5 Aggregation Methods for Rutting Survey  

Agency Method 
Aggregation 

Unit 
Sampling Interval Data Aggregation 

AASHTO (2010) --  
10m (network) 
or 2m (project) 

<3m (network) or 
<0.5m (project) 

Average and maximum rut 
Depth 

KDOT (mails with 
Rick Miller) 

3-point 0.1 mi 1 ft. 
Average rut Depth for each 

wheel path 

ODOT (2010) 5-point 0.1 mi 6 in. 
Average rut depth and 

standard deviation for each 
wheel path 

PennDOT (2010) Profiler 0.5 mi <30 ft. 
Length for each severity 
level for each wheel path 

TxDOT 
Self-
developed 
device 

0.1 mi 1 ft. Average, maximum, etc. 

Australia 
(Austroads, 2007) 

Multi-
laser 

100 m <=250 mm 

Average of maximum rut 
depth for each wheel path; 
standard deviation; wheel 

path rut bins 
MTQ (Grondin et 

al., 2002) 
LRMS 100 m 1 m 

Maximum of average rut 
depth for each wheel path 

 

The aggregated rut depth values are further aggregated into reporting units. Table 6.6 lists the 

reporting methods used by several transportation agencies. In Kansas DOT (KDOT), the average 
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and maximum rut depth values within 1 mi are reported. It is also observed that typically used 

statistics are average, maximum, and standard deviation. The average value is generally used to 

indicate the overall rutting characteristics. However, maximum and standard deviation values 

can be used to identify the uniformity of rut distribution. 

Although current data aggregation and reporting methods fulfill the need of network-level 

reporting, they do not develop the information needed to support project-level decision-making, 

such as determining the location of an isolated rut for qualifying a localized treatment. The 

severe ruts could be averaged out with the current methods.  

Table 6.6 Rutting Reporting Methods  

Agency Report Unit Aggregation Unit Data Aggregation 
KDOT (mails with 

Rick Miller) 
1 mi 0.1 mi 

Average and maximum rut 
depth for each wheel path 

TxDOT 1 mi 0.1 mi 
Average, maximum, standard 
deviation, percentiles of rut 
depth for each wheel path 

 

1.4 Rut Depth Measurement Errors 

For transportation agencies, the network level rutting survey, in which the accuracy of rut depth 

measurement is most concerned, is an indispensable means to assess the a pavement’s structure 

and safety performance. Although rut bar systems have been broadly used, researchers and 

practitioners generally have concerns about the accuracy of rut bar methods, since they only 

sample a limited number of points along the transverse direction. A number of studies have 

shown that the point-based rut bar systems could underestimate the rut depth in comparison with 

the manual method (the straightedge method). Ksaibati (1996) evaluated the rut depths measured 

by 3-sensor and 5-sensor profilometers and found significant differences between the non-

contact and direct-contact measurements. Jameson et al. (1989) and Cenek et al. (1994) both 

compared the rut depth obtained by the laser Road Surface Tester (RST) to those by the 

straightedge method and found major differences. Hallett and Robieson (1996) compared the 

ARRB multi-laser profilometer with the detailed manual survey profiles and found differences, 

as well.  
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More recently, the reliability of the derived rut information from point-based rut bar systems has 

been further challenged. The analysis results echoed the conclusions made by previous 

researchers. For example, HTC (2001) compared the rut depths from a 30-sensor ROMDAS 

profilometer with those field measurements using a 1.5m straightedge method and identified a 

3mm bias. Mallela and Wang (2006) assessed the actual sampling bias of the profilometers 

operated in New Zealand (13 to 30 sensors) and concluded that rut depth measurement is 

underestimated by 2-4mm. Simpson (2001a) determined that the correlation of rut depths 

measured by a 5-point rut bar and a rod and level elevation survey is approximately 0.4. Also, 

Simpson (2001b) studied the accuracy and bias of the RoadRecon and Dipstick methods. The 

coefficient of variance of the rut depth measured by the RoadRecon unit is 11% and 4% for 

Dipstick.  

In summary, 3-point and 5-point rut bar systems have shown poor accuracy. The measurement 

error is primarily due to the limited sampling points taken by a point-based rut bar system, which 

cannot capture the real shape of a rut and usually underestimates the rut depth.  

2. Research Need and Objective 

The following needs are identified for rutting data analyses in transportation agencies’ practice: 

 There are systematic errors in rut depth measurement using point-based rut bar systems. 

Since those systems consist of only a limited number of laser points, they usually 

underestimate the rut depth. It is expected that the 3D laser technology can better measure rut 

depth because it captures more than 4,000 laser points on each transverse profile. However, 

there is a need to validate the rut depth measurement accuracy before it can be utilized by 

transportation agencies. In addition, the measurement error of a point-based rut bar system 

can be further evaluated by downsampling the captured transverse profiles. 

 There is a need to develop a methodology to characterize rutting information using the 3D 

laser technology in support of the existing pavement management system (e.g. the Georgia 

Pavement Management System, GPAM). Algorithms or methods are needed to aggregate the 

detailed rut depth data to support existing pavement data collection practice and support both 

network-level and project-level treatment decision-making. 
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 There is a need to develop a method to automatically identify isolated ruts using the 3D laser 

technology for determining low-cost and localized treatments.  

To fulfill the above needs, the following study has been performed and is presented in this 

chapter:  

 To verify the rut depth measurement accuracy using the 3D laser through both the controlled 

laboratory tests and field tests. For these tests, the 3D continuous transverse profiles were 

collected and processed using commercial software and a developed rut depth calculation 

application. The calculated rut depths were then compared to the manually-measured ground 

truth, and, the rut depth measurement accuracy was quantified.  

 To assess the error of point-based rut bar systems using the essentially continuous 3D data as 

the ground truth. Different severity levels of rutting were analyzed to have a better 

understanding of the measurement error from point-based systems.  

 To evaluate the feasibility of using the 3D laser in network-level rutting survey. To evaluate 

the feasibility of using the 3D system for detecting isolated ruts.  

3. Assessment of Rut Depth Measurement Accuracy using 3D laser 

Both laboratory test and field tests have been conducted to evaluate the accuracy of rut depth 

measurement using the integrated 3D laser system. The laboratory test was performed under a 

controlled environment to exclude the effect of external factors, such as vehicle vibration. After 

the laboratory test, field tests at highway speed were also conducted to estimate the measurement 

error coming from both the instrument and the vehicle vibration. The following introduces the 

test design and then the test results. 

3.1 Experimental Test Design 

3.1.1 Laboratory Test 

The rutting severity levels are commonly indicated by the ranges of rut depth. In ODOT (ODOT, 

2010), rut depth for the low severity rutting is 1/4 in. (6.35mm) to 1/2 in. (12.7mm). Rut depth 

for the medium severity rutting is 1/2 in. to 3/4 in. (19.1mm). Rut depth for high severity rutting 

is greater than 3/4 in. To simulate the rutting of different severity levels in the laboratory, a 

curved wood board and a curved metal bar were used as shown in Figure 6.2 (a) and (b). On the 
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wood board, 10 profiles were marked with blue tapes. The rut depths of those profiles varied 

from several millimeters to several centimeters. The curved metal bar was used to simulate a rut 

of the high severity level. Thus, there were a total of 11 profiles fabricated in the laboratory for 

testing rut depth measurement.  

The ground truth was established by using the straightedge method, and, the data collection 

procedure followed the standard specified in ASTM E1703 (2010). As shown in Figure 6.2(a), a 

steel angle bar was used as the straightedge. The rut depth was measured using a vernier caliper 

with a precision of 0.02mm. During the measurement, the vernier caliper is set to be 

perpendicular to the steel bar. To identify the maximal distance between the steel bar and the 

wood board surface, sufficient measurements were made along the steel bar. To reduce the 

measurement error, the measurement for each profile was repeated 3 times. The average rut 

depth of these three runs was considered as the ground truth. 

To test the 3D laser on the simulated rutting, it was set up in the laboratory as shown in Figure 

6.3(b). Because the length of the simulated pavement profiles is less than a half-lane, only one 

laser profiling unit was installed. The infrared camera was used to observe the invisible laser line 

as shown in Figure 6.3(b). The measurement procedure for each profile was repeated twice. 

During each measurement procedure, the wood board or the metal bar was placed under the laser 

profiling unit and its position was fine-tuned until the laser line was right on the marked profile. 

After that, 2,000 repetitive data profiles were collected using the 3D laser. For testing the 11 ruts, 

a total of 44,000 (=11×2×2,000) profiles were obtained. Figure 6.4 shows two typical profiles. 

The rut depth for each profile was calculated using a simulated 1.8m straightedge method, which 

will be presented in Section 3.2.1. 

3.1.2 Field Test 

Two roadway sections were selected in Pooler, Georgia. As shown in Figure 6.5(a), a 725m 

roadway section was chosen on Benton Boulevard. A 45m roadway section was selected on 

Towne Center Ct., shown in Figure 6.5(b). There were six test transverse profiles marked with 

paint, which can be seen from the laser intensity data, on the Benton Blvd. test section. On the 

Towne Center Ct. test section, 4 test profiles were marked. These test profiles are non-uniformly 

distributed over the test section.  
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(a) 

 
(b) 

Figure 6.2 Simulated Rutting in Laboratory: (a) Wood Board; (b) Metal Bar 

 
(a) 

 

(b) 

Figure 6.3 Laboratory Test Setup: (a) Straightedge Rutting Measurement; (b) 3D laser 

System Setup in the Laboratory 
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Figure 6.4 Typical Transverse Profiles Measured in the Laboratory 

To establish the rut depth ground truth of those 10 test profiles, a 1.8m straightedge method was 

performed as shown in Figure 6.5(c). The same measurement procedure was followed as that in 

the laboratory test, which was repeated 3 times for each transverse profile. The average rut depth 

for each transverse profile was considered as the ground truth.  

The 3D laser was mounted on the GTSV as shown in Figure 6.5(d). The sensing vehicle drove 

on both test sections for three runs and collected 3D continuous transverse profile data. The 

mean vehicle speeds for the first test section were 37.8mph (mi/hr), 34.4mph, and 32.8mph, 

respectively; they were 13.5mph, 17.8mph, and 15.3mph for the second test section. Because the 

road sections were chosen on local roads to facilitate the manual measurement, no highway 

speed, higher than 60mph, was tested in this study. Figure 6.6 shows two typical transverse 

profiles obtained by the 3D laser. The measured profiles were then used to calculate the 

corresponding rut depth.  

Another field test was conducted on a GDOT-monitored project on SR 275 near Savannah, 

Georgia, to assess the rut depth measurement accuracy. Figure 6.7 (a) shows the roadway 

environment on SR 275. This 2-lane road is 5.53 mi long. The overall PACES rating is 80 in 

Fiscal Year 2011 (FY2011). Table 6.7 summarizes the PACES ratings for each segment of SR 

275. As shown in Table 6.7, only the segment between milepost 0 and milepost 1 has relatively 

severe rutting, which might have been caused by localized material problems, structural 

problems, and/or the heavy truck traffic on this section.  
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(a)       (b) 

  
(c)       (d) 

Figure 6.5 Field Test: (a) Test Site on Benton Blvd.; (b) Test Site on Towne Center Ct.; (c) 

1.8m Straightedge Method; (d) Survey using 3D laser System 

  

(a)                                            (b)  

Figure 6.6 Typical Transverse Profiles: (a) Low Severity Level Rutting; (b) Medium 

Severity Level Rutting 
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           (a)           (b) 

Figure 6.7 Field Test on SR 275: (a) Test Site; (b) Rutting 

Table 6.7 COPACES Records in FY 2011 for SR 275 (Overall Project Rating is 80) 

Route 
No 

Segment From-
To (mi) 

Sample Location
(0.1 mi) 

Segment 
Rating 

Lane 
Direct 

Rut_Out_WP 
(1/8 in.) 

Rut_In_WP 
(1/8 in.) 

0275 0-1 7 58 NEG. 4 3

0275 1-2 5 80 NEG. 1 1

0275 2-3 4 90 POS.  1 0

0275 3-4 4 74 NEG. 1 0

0275 4-5 6 73 POS.  -- 1

0275 5-5.53 4 70 POS.  0 0

 

A manual survey was carried out by a GDOT liaison engineer. The surveyor first drove over the 

test site and located a 100ft. sample section that represents the representative pavement condition 

in each segment (1 mi). Then, a straightedge method was used to measure the rut depth on a 

randomly selected location within the 100ft. section, which is rounded to the nearest 1/8 in. The 

manual survey result is presented in Table 3.8. During the manual survey, the locations of the 

manual survey were also labeled. The labels are visible to the sensing system and can be used as 

a location reference when the manual survey results and the automated survey results are 

compared. An example of the labels marked in the field and visualized in the 3D data is given in 

Figure 6.8. 
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(a) (b) 
Figure 6.8 Labels in (a) Field and in b) 3D Laser Data 

Table 6.8 Manual Survey Results on SR275  

Segment From-To 
(mi) 

Lane Direct 
Rut_In_WP

(1/8 in.) 
Rut_Out_WP 

(1/8 in.) 
0-1 NEG. 3 3 
1-2 NEG. 2 4 
2-3 POS. 0 1 
3-4 POS. 1 1 
4-5 NEG. 1 1 

 

Table 6.9 Manual Measurement Results on Locations Chosen on SR275 

Marked Spot 
Manual Rut Depth (1/8 in.)

In Out

R1 3 1

R2 3 3

R3 2 4

R4 -- 4

 

3.2 Data Analyses  

The simulated straightedge method, which is suggested in the ASTM 1703 Standard (2010) and 

commonly adopted by researchers (Laurent et al., 1997; Li et al., 2009, 2010), is used for 

computing the rut depth based on the 3D continuous transverse profiles in this study. Two rut 

depth calculation algorithms based on the principles of simulated straightedge method have been 



 

103 

 

applied. One comes with the 3D laser, and the other one has been developed by the Georgia Tech 

research team. Both algorithms are presented and compared in this section. 

3.2.1 DCT-based Rut Depth Calculation Algorithm 

From Figure 6.4 and Figure 6.6, it can be seen that the collected profiles are not very smooth. 

Due to the relatively smooth surface of the simulated ruts in the laboratory, the data variation in 

Figure 6.4 could come from the noise of the sensing device. The data variation in Figure 6.6 is 

more severe because it could result from both the device noise and the pavement surface texture. 

Due to the low frequency of vehicle vibration in comparison with the 3D laser data capturing 

frequency, the contribution of vehicle vibration to profile data variation can be omitted.  

To calculate the rut depth using the collected profiles, the data variation needs to be smoothed 

out first. For this purpose, a Discrete Cosine Transform (DCT) was employed and the DCT 

coefficients were selected to preserve 99.9% of the total signal energy. The smoothed profile was 

shown in Figure 6.9 (a). Due to the significant end effect of a DCT, as seen in Figure 6.9 (a), 

which will impact the accuracy of rut depth measurement, a stepwise linear interpolation was 

used at the two ends of the rut profile. The improved and smoothed profile can be seen in Figure 

6.9 (b).  

 

       (a)               (b) 

Figure 6.9 Smoothed Transverse Profiles: (a) DCT Only; (b) DCT plus Stepwise Linear 
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After the rut profiles were smoothed, a simulated 1.8m straightedge method was used to 

calculate the rut depth. The following are the procedures: 

 Identify the highest points at both ends of a rut profile that are the standing points of the 

straightedge;  

 Connect the two standing points;  

 The maximum distance between the simulated straightedge and the profile is the rut depth, as 

shown in Figure 6.10.  

 

Figure 6.10 1.8m Straightedge Method 

3.2.2 3D laser Based Rut Depth Calculation 

Another rut depth calculation algorithm is implemented in the tested 3D laser (2010). The 

algorithm is shown in Figure 6.11. The black curve is a pavement surface transverse profile. The 

black straight line simulates the straightedge, and the green block simulates the gauge that is 

used to read the rut depth measurement in the field. The gauge width is adjustable. In this study, 

5mm is used. The rut depth computation algorithm is implemented as follows. First, a median 

filter is used to smooth the raw transverse profile and the smoothed profile is then fit with 

straight lines. Second, the rut support point pairs, (xL, zL) and (xR, zR), are identified and justified. 

Third, the rutting characteristics (including the rut depth, rut width, rut shape, and rut cross-

section area) are measured for both wheelpaths.  

 Rut depth is given by: 
22 )()( TBTB zzxxDepth  . 

 Rut width is given by: 
22 )()( LRLR zzxxWidth  . 

 Rut cross-section area is the cross-section area of the detected rut under the straightedge. 
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Figure 6.11 Rut Depth Calculation (LCMS, 2010) 

3.2.3 Comparison of Rut Depth Calculation Algorithms 

The 3D laser provided and DCT-based algorithms are used to process the ten transverse profiles 

collected from county roads in the field test so that their performance can be compared. The 

comparison results are tabulated in Table 6.10. According to the comparison results, the absolute 

difference between the 3D laser provided and DCT-based algorithm is less than 1mm. The 

average difference is -0.1mm for both run1 and run2. This indicates that both algorithms can 

provide essentially similar rut depth measurements. 

3.3 Test Results  

3.3.1 Laboratory Test Results 

Table 6.11 shows the rut depth measurement results on the 11 simulated rutting profiles. The 

average manual measurements vary from 7.9 mm to 43.4 mm covering low to high severity 

levels. They are considered as the ground truth. Two runs of 3D laser measurements were 

performed. The difference between these two runs ranges from 0.1mm to 1.3mm, which is 

comparable to the manual measurement error. The difference between the 3D-line-laser-

measured results and the ground truth varies from -0.4 mm to 0.7 mm, which is less than 1mm. 

As mentioned above, 2,000 profiles were collected by the 3D laser for each simulated profile in 

each test run when the locations of the laser profiling unit and the test profile were fixed. These 

2,000 profiles can be used to assess the repeatability and the noise level of the 3D laser.  
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Table 6.12 summarizes the analysis results with regard to the standard deviation of rut depth 

among 2,000 profiles for each simulated profile in each run. It shows that the standard deviation 

varies from 0.1mm to 0.3mm, which is satisfactory because the claimed depth measurement 

accuracy of the 3D laser is 0.5mm. Regarding the measured rut depth between the two runs, the 

difference is bigger than the variation of 2,000 profiles in each run, since the fine-tune process 

cannot guarantee that in each run 3D laser takes exactly the marked profile. Figure 6.12 shows 

the correlation of rut depth measurements between the two runs. In accordance with the standard 

ASTM C670-03, the average coefficient of variance is about 4.4%, which indicates good 

measurement repeatability. 

3.3.2 Field Test Results 

The field test results on the local roads are summarized in Table 6.13. Ten manually marked 

profiles on the test roadway sections were examined. The manually measured rut depths, which 

are considered as the ground truth, vary from 6.4mm to 21.1mm. They correspond to the low to 

high severity level of rutting. Compared to the average of 3D-line-laser-measured results, the 

difference varies from -1.0mm to 2.3mm, which is apparently higher than the one in the well-

controlled laboratory test. Several factors could contribute to this. First, for a profile-based 

comparison, it is very critical to make sure that the location of each extracted profile from 3D 

laser data is exactly the same as the manually marked and measured one. In the harsh field 

testing environment, it is very difficult to make this happen. Second, unlike the well-controlled 

laboratory test, vehicle wandering is inevitable in a field test, which will impact the rut depth 

measurement. Besides, from the comparison result, a trend shows that the ground truth is greater 

than the 3D-line-laser-measured result except the one for profile #3. There is an approximately 

1.5mm measurement bias for 3D laser when compared with the ground truth.  

From the testing results listed in Table 6.13, the absolute rut depth measurement difference is 

around 1.6mm, which is the average of “absolute difference to ground truth.” Also, this 

difference is independent of the rut depth, which indicates that the relative error decreases with 

the increase of rut depth. For example, though the relative error for profile #10 is around 19%, 

the one for profile #9, which has the largest rut depth, is just 4%. This will assure the accuracy of 

rut depth measurement for more severe rutting, which is the most important concern in 

transportation agencies’ practices. 
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Table 6.10 Comparison of Two Algorithms 

Profile ID 
Rut Depth in Run 1 (mm) Rut Depth in Run 2 (mm) 

DCT 3D laser Diff2 DCT 3D laser Diff2 
1 12.1 12.2 -0.1 14.0 14.7 -0.7 
2 13.4 13.8 -0.4 14.6 14.7 -0.1 
3 10.7 10.4 0.3 10.8 10.0 0.8 
4 12.9 12.2 0.7 12.1 12.5 -0.4 
5 6.0 6.5 -0.5 6.7 6.9 -0.2 
6 7.3 7.5 -0.2 7.2 7.1 0.1 
7 5.9 6.1 -0.2 6.0 7.0 -1.0 
8 7.2 7.6 -0.4 7.1 7.6 -0.5 
9 19.8 20.0 -0.2 20.8 20.0 0.8 
10 5.7 5.6 0.1 4.7 4.8 -0.1 

Average -- -- -0.1 -- -- -0.1 
  

Table 6.11 Laboratory Testing Results 

Profile 
# 

Severity 
Level 

Rut Depth (mm) 

Ground 
Truth 

3D laser Measured 
Difference to 
Ground Truth 1st Run 2nd Run

Difference 
between Runs 

Average 

1 Low  8.0 8.3 7.1 1.2 7.7 0.3 
2 Low  7.9 8.2 8.0 0.2 8.1 -0.2 
3 Low  7.9 6.8 7.6 0.8 7.2 0.7 
4 Medium  13.2 13.2 13.1 0.1 13.2 0.0 
5 Low  12.3 12.3 11.5 0.8 11.9 0.4 
6 Medium  14.2 13.8 14.0 0.2 13.9 0.3 
7 Medium  15.5 15.0 14.8 0.2 14.9 0.6 
8 Medium  16.2 15.4 16.7 1.3 16.1 0.1 
9 Medium  17.5 17.6 17.1 0.5 17.4 0.1 

10 Medium  10.0 11.0 9.7 1.3 10.4 -0.4 
11 High  43.4 43.2 -- -- 43.2 0.2 

-- Invalid testing data 
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Table 6.12 Standard Deviation of Rut Depth among 2,000 Profiles 

Profile # 1 2 3 4 5 6 7 8 9 10 11 

Std. 
Dev. 
(mm) 

1st Run 0.1 0.2 0.2 0.1 0.1 0.2 0.1 0.2 0.1 0.2 0.3 

2nd Run 0.2 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.1 0.2 -- 

-- Invalid testing data 

 

Figure 6.12 Correlation of Rut Depth in Two Runs in Laboratory 

In addition, for the network level rutting survey, profile-based rutting data is normally 

aggregated for every fixed interval, say 10 ft., which will further reduce the random 

measurement error. In this feasibility study, only profile-based testing was performed. To further 

validate the accuracy and applicability of using 3D laser for the rutting survey, larger-scale 

network-level testing is needed. 

Figure 6.13 shows the correlation of 3D-line-laser -measured rut depth among 3 runs. The 

average coefficient of variance is about 5.3%. Although more tests are needed, current results 

still show good measurement repeatability. 

On SR 275, the automated measurements are compared to the manual measurements for four 

marked spots during the field survey. They are denoted as R1, R2, R3, and R4 in Table 6.14. The 

rut depths, manually measured in the field using a straightedge method, are used as the ground 

truth. Then, three runs of automated survey were carried out (at around 47 mph). The rut depth 

for each spot was calculated using the automated method presented above. The difference of rut 

5 10 15 20 25 30 35 40 45
5

10

15

20

25

30

35

40

45

Rut Depth in 1st Run /mm

R
u

t 
D

ep
th

 in
 2

n
d

 R
u

n
 /m

m



 

109 

 

depths measured during different runs is less than 0.8 (of 1/8 in.) for most marked spots. The 

average coefficient of variance is about 4.6%. This indicates that 3D laser has a high 

repeatability in measuring the rut depth, which concurs with the previous finding. The average 

rut depth of the three runs is then compared with the ground truth. The absolute difference 

between the manual and the automated rut depth measurements is less than 1/8 in. (which is 

around 3.2mm).  

Table 6.13 Field Testing Results 

Profile 
# 

Severity 
Level 

Rut Depth (mm) 

Ground 
Truth 

3D laser Measured Difference to 
Ground Truth 

 1st run 2nd run 3rd run Average 

1 Medium 14.5 12.1 14.0 13.5 13.2 1.3
2 Medium 15.8 13.4 14.6 12.8 13.6 2.2
3 Low 9.6 10.7 10.8 10.3 10.6 -1.0
4 Medium 14.2 12.9 12.1 11.3 12.1 2.1
5 Low 8.5 6.0 6.7 7.6 6.8 1.7
6 Low 9.5 7.3 7.2 7.1 7.2 2.3
7 Low 7.8 5.9 6.0 6.6 6.2 1.6
8 Low 9.4 7.2 7.1 7.2 7.2 2.2
9 High 21.1 19.8 20.8 20.3 20.3 0.8
10 Low 6.4 5.7 4.7 5.3 5.2 1.2

 

Figure 6.13 Correlation of Rut Depth in Three Runs in Field 
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Table 6.14 Manual vs. Automated Survey Results on SR 275  

Rut Depth 
(1/8 in.) 

Manual Auto 

Profile # In Out 
In Out 

Run1 Run2 Run3 Avg Diff Run1 Run2 Run3 Avg Diff

R1 3 1 3.4 3.5 3.5 3.5 -0.5 1.5 1.5 1.4 1.5 -0.5

R2 3 3 2.8 2.4 2.7 2.6 0.4 2.1 1.9 2.0 2.0 1.0

R3 2 4 2.8 2.8 -- 2.8 -0.8 3.1 3.4 3.4 3.3 0.7

R4 -- 4 2.7 2.7 -- 2.7 -- 2.9 3.1 3.7 3.2 0.8

3.4 Summary  

The assessment on the rut depth measurement accuracy using the emerging 3D laser technology 

is presented above. Eleven laboratory-simulated profiles and 14 field-selected profiles (from two 

county routes and one GDOT-maintained route) were tested in a well-controlled laboratory 

environment and in a practical field environment. The ground truth of rut depth for each testing 

profile was established by using the manual straightedge method. Based on the profiles acquired 

by 3D laser, the rut depths were calculated by using the simulated straightedge method.  

Laboratory test results show that the difference between 3D-line-laser-measured rut depth and 

the ground truth ranges from -0.4 mm to 0.7 mm, which indicates the high accuracy of the rut 

depth obtained by 3D laser. In the laboratory, the location of 3D laser, and the simulated profiles 

are fixed, and 2,000 profiles were obtained in each test run for each simulated profile. The test 

run was repeated twice. The rut depth standard deviation of every 2,000 profiles ranges from 

0.1mm to 0.3mm. This result shows the high repeatability of the laser profiling system. In 

addition, 4.4% of the average coefficient of variance for two testing runs also shows good 

repeatability of the rut depth measurement. 

Due to the uncontrolled environment, such as vehicle wandering, the results from both field tests 

are inferior to the ones in the laboratory. However, the -1.0mm to 2.3mm (the measurement error 

in the second field test is less than 1/8 in., which is equal to the manual measurement accuracy) 

absolute difference to the ground truth shows sufficient accuracy for the 3D-line-laser-measured 

rut depth. This measurement error satisfies the rut depth measurement accuracy requirement, 

which is +/-3mm, from multiple transportation agencies (Alberta DOT, 2002; McGhee, 2004). 

More importantly, the testing results indicate the difference has no dependence on the rut depth, 
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which means the relative measurement error would decrease for more severe rutting. In the field 

test, 3 runs of testing were performed for each marked profile. The average coefficient of 

variance is about 5.3% and 4.6% for the two field tests, respectively, which indicate a good 

repeatability of rut depth measurement under the practical field testing environment. 

4. Assessment of Rut Depth Measurement Error of Point-based Rut Bar 

Systems 

Using the emerging 3D laser imaging system, the rut depth measurement error of point-based rut 

bar systems is characterized and quantified in this section. The objective is to use the continuous 

transverse profile as the ground truth to evaluate the potential rut measurement error for rut bar 

systems with different sensor configurations. Experimental tests were performed using the 

continuous transverse profile data that was collected in field. 

4.1 Research Need 

As reported by a NCHRP report (McGhee, 2004), among 40 state transportation agencies (46 for 

total transportation agencies in north America), 16 are using 3-point rut bar systems, 13 are using 

5-point systems, and 11 are using a rut bar system with sensors varying from 7 to 37. Among 

these 11 agencies, 5 use a 37-point system. Transportation agencies have concerns about the 

accuracy of the derived rut information because the rut bar systems cannot measure a continuous 

pavement transverse profile. The limited number of sensors may not locate exactly on the top of 

pavement ruts because of the wandering of survey vehicle, varying of lane width, and asymmetry 

of the transverse profiles. Hence, the rut depth may be underestimated. Besides, the rut bar 

system cannot cover the full lane because its length is limited to approximately 3m. Previous 

studies pointed out that 3-point and 5-point rut bar systems are unreliable with regard to rut depth 

measurement. The inaccurate rut depth measurement generally underestimates the rut depth. This 

can result in uneconomic treatment planning and safety issues because the deep rut was not 

repaired in time. Accordingly, there is a need to quantify the measurement errors so that 

transportation agencies can use the derived information confidently to support their pavement 

management decision-making. 

Several studies have been done to quantify the reliability of the derived rut information using rut 

bar systems (Mallela and Wang, 2006; Simpson, 2001a; Simpson, 2001b; White et al., 2002). 
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However, it still remains a challenge to establish the ground truth. Simpson (2001a; 2001b) used 

transverse profiles, each of which consists of 25 points, collected by the rod and level method as 

the benchmark. Thirty transverse profiles were collected and analyzed. Data Collection Ltd 

(DCL) used Transverse Profile Beam (TPB) with a transverse resolution of 3mm to establish 

reference profiles as ground truth (Mallela and Wang, 2006). Only 64 reference profiles were 

collected and analyzed. Both static devices to establish the ground truth is time-consuming and 

labor-consuming and only limited numbers of reference profiles can be obtained.  

With the advancement of the emerging line laser technology, the 3D laser can quickly collect the 

continuous transverse profiles with more than 4,000 points on each of them that cover a single 

lane. It provides an excellent basis to evaluate the rut depth measurement accuracy of different 

rut bar systems because the 3D-line-laser -based rut depth measurement accuracy has been 

validated above.  

4.2 Experimental Test Design 

The experimental tests were performed to assess the point-based rut-depth measurement error 

with respect to sensor configuration and rut configuration. For sensor configuration, the rut bar 

systems with 3 sensors, 5 sensors, and 7 to 39 equally spaced laser sensors were tested. From 

these tests, the relationship between the rut-depth measurement error and the number of sensors 

was evaluated. Thus, a recommendation can be made for the minimal number of sensors required 

to assure that the measurement error falls within the range of an acceptable level. In addition, rut 

configuration, such as the rut shape, rut depth, and rut location, also affects the measurement 

error. Therefore, according to the available data, the impact of different rut configurations on rut-

depth measurement error was also analyzed. The following subsections will briefly introduce the 

testing data and the measurement methods of point-based rut bar systems. Then, test results are 

presented followed by the analyses and discussion of the measurement error. 

4.2.1 Test Data 

The test data was collected using the 3D laser on an actual 10m asphalt pavement section. There 

are total 4,000 half-lane transverse profiles, which can be combined to 2,000 full-lane transverse 

profiles. To avoid the efforts of transforming the original profile data, only half-lane transverse 

profiles collected by the left 3D laser profiler were used; it was assumed that the right profile is 
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symmetric to the left one. Thus, the rut depth determined by the left half-lane profile can be used 

to represent the one of the full lane.  

Figure 6.14 shows two typical pavement profiles with U shape (green line) and V shape (red 

line) that are located at milepoint 3.4m and 6.4m on the tested pavement sections. Intuitively, a 

U-shape rut has less impact on the rut-depth measurement error brought by a point-based rut bar 

system because the valley is flat and wide, and the possibility of a sensor located on it is high. In 

contrast, a V-shape rut has a narrow valley, and it is hard for a sensor to be just located on the 

top of the valley. So, a V-shape rut has a bigger impact on the measurement error when a point-

based rut bar system is used. 

4.2.2 Rut Depth Computation 

The 3D continuous transverse profiles were processed using the algorithms presented in Section 

3.2.2, and the acquired rut depths were used as the ground truth. The rut depth computations for 

rut bar systems with 3 sensors, 5 sensors, and the others with 7 to 39 equally spaced laser sensors 

are briefly introduced as follows. In general, the point-based rut depth computation is equivalent 

to sampling the ground truth profile data with different points and configurations and then 

calculating the rut depth using the corresponding methods.  

 
Figure 6.14 Road Transverse Profiles at Milepoint 3.4m and 6.4m 
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Figure 6.15 illustrates the configuration of a 3-point rut bar system. The 3 sensors are equally 

spaced at 860mm (Hossain et al., 2002) with the left and right sensors on top of left and right 

wheel path. Each sensor measures the distance from the reference plane to the corresponding 

pavement surface, which are D1, D2, and D3 for the middle, left, and right sensor. Assuming that 

the pavement surface in the middle has no rutting, the rut depth in the left and right wheel path 

can be easily calculated using the distance differences, as shown in Equations (3.1) and (3.2).  

2 1LRD D D   (3.1) 

3 1RRD D D   (3.2) 

 

Figure 6.15 Sketch of 3-point Rut Bar Configuration 

For the 5-point rut bar system, AASHTO PP 38-00 requires that the minimum spacing between 

the two outermost sensors be 2,300mm. In our preliminary test, the 5-point rut bar system 

configuration used by Hossain et al. (2002) was adopted, which is shown in Figure 6.16. The 

spacing between the sensor on the wheel path and the one on the road centerline is 875mm. The 

outer sensor is located 546mm from the outside of the wheel path sensor (Hossain et al., 2002). 

The left and right rut depth can be computed using the left and right 3 sensor-captured distances 

from the reference plane to the pavement surface, which are shown in Equations (3.3) and (3.4). 

4 3 5( ) / 2LR D D D    (3.3) 

2 1 3( ) / 2RR D D D    (3.4) 
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Figure 6.16 Sketch of 5-point Rut Bar Configuration 

For other equally-spaced rut bar systems, a 1.8m straightedge method is used to calculate the rut 

depth. Figure 6.17 illustrates how to calculate straightedge rut depth for a 7-point rut bar system. 

The red curve represents the road profile obtained by a 7-point rut bar system. Then the 

straightedge rut depth is calculated as follows: 1) the highest points for both ends of the profile 

are identified; 2) a straight line is drawn to connect them, which mimics the straightedge; and 3) 

the maximum perpendicular distance between a laser point and the straightedge is the 

straightedge rut depth.  

1.8m Straightedge

Road Profile

Left Wheelpath

Rut Depth

 

Figure 6.17 Straightedge Method 

4.3 Test Results 

Figure 6.18 shows the calculated rut depths along the 10m road section that includes 2,000 

transverse profiles. Though vehicle wandering is another major source of measurement error of 

point-based rut bar systems, only the variation of rut locations is considered in the preliminary 

test; i.e., it is assumed that vehicle travels along the centerline of a lane. Therefore, the 

measurement error is assumed to be caused only by the rut location variations. In Figure 6.18, 

the blue line indicates the ground truth pavement rutting profile along the driving direction, 

which was calculated using the 3D continuous transverse profiles. Rutting that is deeper than 1/4 

in. occupies around 62% of the testing road section (pavements with rut depth above the dashed 
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blue line). Other parts of the road section show no significant rutting. The deepest rutting occurs 

at about 6.5m with a rut depth of 11mm. In comparison, other rutting profiles along the driving 

direction are also drawn in Figure 6.18 with different colors. To make the figure readable, only 

rutting profiles for 3-point, 5-point, 9-point and 39-point rut bar systems are presented. 

Apparently, with the increasing number of sensors, the rutting profiles get closer and closer to 

the ground truth. 

To further assess the measurement error caused by using point-based rut bar systems with 

different numbers of sensors, the histograms of measurement errors along the driving direction 

were analyzed. They are presented in Figure 6.19. The corresponding means of errors for all 

point-based rut bar systems are reduced with the increasing number of sensors. For 3-point and 

5-point rut bar systems, the average measurement errors are about 63% and 44%. When the 

sensor number increases to 9, the mean error becomes 24%, although the variation of error does 

not change much. If the number of sensors increases to 39, the average measurement error is 

lowered to about 8%. The variation of error also decreases.  

 
Figure 6.18 Rut Depth Profile along Driving Direction 

Figure 6.20 shows the mean and variance of the measurement error vs. number of sensors curve. 

Though there is some variation from 7 to 21 sensors due to the short testing road section, the 

overall trend is clear that the measurement error decreases with the increasing number of sensors. 
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If the number of sensors is larger than 25, both the mean and variance of the error drops 

constantly. The mean error has a value below 10%. 

 

Figure 6.19 Measurement Errors of Point-based Rut Bar Systems along Driving Direction 

 

Figure 6.20 Relationships between Mean and Variance of Relative Measurement Errors 

and Number of Sensors 

Without the consideration of vehicle wandering, the variation of measurement error along the 

driving direction is caused by several factors, such as the number of sensors, sensor locations, rut 

shape, rut depth, and rut location. As mentioned above, a U-shaped rut could lead to less 

measurement error for a point-based rut bar system. However, a V-shaped rut might have a 
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larger error. As an example, the following investigates two transverse profiles that are shown in 

Figure 6.14. At the milepost 3.4m where the rut shape is U-shaped, the measured rut depths for 

3-point, 5-point, 9-point and 39-point rut bar systems are 1.6mm, 3.3mm, 4.7mm, and 5.0mm, 

respectively. In comparison with the ground truth of 5.5mm, the measurement errors are 78%, 

40%, 15%, and 9%. However, at the milepost 6.4m where the rut shape is V-shaped, the 

measured rut depths are 4.6mm, 6.0mm, 7.9mm, and 9.4mm. Compared with the ground truth of 

10.1mm, the measurement errors are 54%, 40%, 22%, and 7%. For 3-point rut bar systems, the 

errors for the U-shape are larger than the ones for the V-shape because the rut location and 

sensor location have larger impacts on the error than the rut shape. For the 9-point system, the 

error for the U-shape is apparently smaller. However, when the number of sensors increases to 

39, the error for the V-shape becomes smaller again because, in this case, the rut depth has larger 

impact (the rut depth for the U-shaped rut is about half of the one for the V-shaped rut). 

Therefore, the impact factors for rut-depth measurement error are complicated. 

4.4 Summary  

3D continuous transverse pavement profiles, which were obtained by using the 3D laser, was 

first used in this study to assess the rut-depth measurement errors caused by using different 

point-based rut bar systems that had a different number of sensors. The ultimate goal is to 

establish the optimal rut bar configuration, including number of sensors and sensor spacing, that 

can fulfill the transportation agencies’ needs in their pavement condition surveys and that can 

accurately support their pavement management and maintenance. The large volume of 

continuous transverse profiles provides a more accurate and comprehensive ground truth 

compared with the limited number of ground truth profiles that were used in previous studies. In 

the preliminary study, the commonly used 3-point and 5-point rut bar systems, as well as the 

equally-spaced rut bar systems with number of sensors from 7 to 39, were assessed. The testing 

data uses half-lane, continuous transverse profiles on a 10m road section. Without the 

consideration of vehicle wandering, variation of rut locations and rut shapes are the major source 

of measurement error for each type of point-base rut bar system. Testing results show that 3-

point and 5-point rut bar systems significantly underestimate the rut depth. The average 

measurement errors for 3-point and 5-point rut bar systems are about 63% and 44%. With the 

increasing number of sensors, the measurement error is gradually lowered. With an equally-
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spaced 39-point rut bar system, the measurement error is about 8%. If the number of sensors is 

larger than 25, the measurement error drops constantly to below 10%. From investigation of two 

transverse profiles with U-shaped and V-shaped ruts, it is concluded that the impact factors for 

measurement error are complicated. Even without considering vehicle wandering, the number of 

sensor, sensor locations, rut shape, rut depth, and rut locations could affect the rut depth 

measurement error.  

5. Network-level Rutting Survey 

To support the network-level rutting survey, the continuously calculated rut depths from the 3D-

line-laser -acquired transverse profiles need to be aggregated and partitioned. A proper statistical 

factor is needed to represent the condition of each pavement segment. In this section, the 

procedures to conduct network-level rutting survey using the 3D laser were developed and 

validated through several case studies, including interstate highways, state routes, and county 

roads. Then, the determination of an adequate sampling interval and the performance (i.e. 

processing speed and data storage need) of the method was assessed. The advantages and 

limitations of the tested method are also discussed.  

5.1 Procedures of Network-level Rutting Survey 

The major steps for network-level rutting survey using 3D laser include the following:  

 Step 1: Collect 3D transverse profile data for each project from the start milepost (MP) to the 

end MP. 

 Step 2: Process the raw data to obtain rut depth measurements for individual transverse 

profiles. The rutting processing module from Pavemetrics is employed in this step, which is 

based on the ASTM E1703 standard. The rut information output (including rut depth, rut 

width, cross-section, and gage width) is stored in an XML file. 

 Step 3: Read the XML file to obtain rut depth measurements, which are then aligned to form 

the longitudinal rut depth profiles for both inside and outside wheelpaths along the driving 

direction. 

 Step 4: Remove outliers, caused by wide transverse cracks and raised pavement markings 

based on the assumption that the rut depth would not suddenly change. 
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 Step 5: Divide each project into segments (typically 1mi long) by dividing the data 

proportionally.  

 Step 6: Analyze each segment and report the representative rut depths for both wheelpaths 

and both driving directions using different statistical factors, such as 60th percentile, average, 

standard deviation, skewness, and linear percentages of different severity levels of rutting.  

5.1.1 Read XML Files 

The rutting processing module in 3D laser provides the rutting information (including rut depth, 

rut width, cross-section, and gauge width) by analyzing individual transverse profiles. It 

simulates the manual straightedge method and returns the rutting information for both the left 

and right wheelpaths. The rutting information output is stored in an XML file. Figure 6.21 shows 

one example of the XML file. The rutting information can be found in the "RutInformation" 

element, which can include any number of "Rut-Measurement" elements. The number of 

"RutMeasurement" depends on the length of the road section being processed and the rut 

calculation interval. Each "RutMeasurement" element contains 6 sub-elements. "Position" gives 

the position of the measurement with respect to the beginning of the survey point. "Laneside" 

indicates if the measurement is related to the left or right wheelpath of the lane. "Depth," 

"Width," "CrossSection," and "Type" are the rut measurement parameters. Ruts are categorized 

into three types, multiple ruts, simple rut short radius, and simple rut large radius. 

A MATLAB program has been developed to extract rutting information from multiple XML 

files. The extracted rutting information is then aligned to form longitudinal rut depth profiles. 

One example profile is given in Figure 6.22.  
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Figure 6.21 Example of XML Output File 

 
Figure 6.22 Example of Longitudinal Rut Depth Profiles from XML Files 

5.1.2 Remove Outliers 

Outliers were observed in the longitudinal rut depth profiles. A method is desired to remove 

outliers and, thereby, clean the data. Figure 6.23 shows the major causal factors of outliers. It is 

found that outliers are mainly caused by transverse cracking and raised pavement markings. By 

further examining other data, five types of outliers have been identified according to their causes. 

They are outliers caused by transverse cracks (especially for cracks wider than 5mm), potholes 

and patches, raised pavement markings, rail tracks, and other objects (e.g. tree branches on the 

road). Figure 6.24 shows close-ups of each type of outliers. As seen from the figures, the outliers 

caused by raised pavement markings are distinct. They are usually 100-125mm wide and 2.5-4 

(of 1/8 in.) deep. The outliers caused by a single transverse crack are around 0.8-3 of 1/8 in. 

deep. The depths of the outliers vary significantly. The outliers caused by rail tracks and potholes 

usually have very sharp edges. To assure that isolated ruts are preserved when removing outliers, 

the characteristics of isolated ruts were also explored. One example of a false “outlier event” is 
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highlighted with a red rectangular. It is observed that the slopes of isolated rut are relative 

smooth, usually smaller than 0.3 in/ft. The characteristics of those five types of outliers and 

isolated ruts are summarized in Table 6.15. 

 
Figure 6.23 Causes of Outliers  

 

Figure 6.24 Examples of Outliers  

 

 

 



 

123 

 

Table 6.15 Characteristics of Outliers and Isolated ruts 

Outlier Event Length Range (mm) Depth Range (1/8in.) Slope (in/ft.) 
Transverse Cracks 25-500 0.8-3 0.3-6.0 
Raised Pavement 

Marker 
100-125 2.5-4 1.8-2.7 

Rail Tracks -- 20 ≥2.5 
A Pothole 60 1.6 2.0 

Another Object 400 5 0.9 
Isolated Ruts ≥800 ≥2 ≤0.3 

According to Table 6.15, all outliers have a much sharper slope than the isolated rut. Thus, a 

thresholding method is used to filter the longitudinal rut depth profile. The key of this filtering is 

to calculate the slope. Typically, the whole profile is segmented, and then linear regression is 

applied to calculate the slope for each profile segment. By doing so, the calculated slope value 

highly depends on the size of the segment. However, it is challenging to determine a proper 

segment size that is suitable for different types of outliers because the lengths of outliers vary 

significantly. Therefore, a relatively large segment needs to be used, and a flexible modeling 

technique is needed to handle various outliers. Through the literature review, it is found that the 

multivariate adaptive regression splines (MARS) technique, which is a non-parametric 

regression technique introduced by Friedman (1991), can provide the flexibility. Its concept is to 

model a given profile with piecewise linear models while maintaining the continuity between 

these models. More importantly, it can automatically model the profile without prior knowledge 

of the non-linearity. In this study, MARS is applied to establish piecewise linear models to fit the 

longitudinal rut depth profile. Based on those linear models, the slopes are calculated.  

5.1.3 Divide Project into Segments 

With the longitudinal rut depth profile of a project, a procedure is needed to divide it into 

segments, each of which is typically 1 mi. Sometimes, the first segment or the last segment of a 

project may be less than 1mi. The longitudinal rut depth profiles are found to be longer than the 

project, e.g., perhaps, 10.5 mi long instead of 10.3 mi of actual project length. This is because the 

survey vehicle cannot keep on driving perfectly straight and DMI records the distance that the 

vehicle actually traveled, which is more than the length of the project. To divide the rut depth 

profile into segments, an assumption is made that vehicle wandering occurs consistently. So the 
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profile data is divided into segments proportionally to the segment length. For instance, when 

dividing the 10.5 mi of data into 11 segments, 10 of which is determined to be 1.019-mi long and 

the remaining one is 0.31-mi long. 

To verify this assumption, the driving behavior of multiple drivers was analyzed. Results are 

shown in Table 6.16. It is found that the accumulative amount of vehicle wandering varies 

among drivers, but is fairly consistent for each individual driver. Therefore, it is reasonable to 

assume that the amount of vehicle wandering for the first mile within the project will be similar 

to that of any mile within the same project, unless the driver was changed.  

Table 6.16 Accumulative Vehicle Wandering 

Accumulative Vehicle Wandering 
(mi per mi) 

Driver 1 Driver 2 

Southbound 
Run1 0.019 0.0088 
Run2 0.020 0.0063 
Run3 0.020 0.0063 

Northbound 
Run1 0.020 0.0069 
Run2 0.019 0.0063 
Run3 0.019 0.0063 

5.1.4 Statistical Analyses 

With the filtered rut depth profiles, statistical analyses are conducted. Commonly used statistical 

indicators, including mean, median, 60th percentile, minimum, maximum, skewness, standard 

deviation, linear percentages of none, low, medium, and severe rutting, are calculated. The 

definition of the representative rut depth for a roadway section is that the rut depth can represent 

the rutting condition of the majority of this section. Based on this definition, the histogram of rut 

depth measurements within the road section is drawn first and the range, centered at RD  and 

from  to , is identified. The RD  that contains the maximum number of rut depth 

measurements is denoted as the representative rut depth mode. The representative rut depth mode 

is proposed as the new indicator to represent the rutting conditions. Besides, the percentage of rut 

depths that fall into the range of the representative mode, which is denoted as the maximum 

percentage, is reported. It equals . In this study,  is set to be 1/16 in. Different 

from traditionally used indicators, the newly proposed indicator reflects the true meaning of 
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representative. It, together with the percentage, indicates the homogeneity of the rutting 

condition within the analyzed section.  

 

Figure 6.25 Illustration of Representative Rut Depth Mode 

5.2 Case Study 

Case studies on several state-maintained and non-state-maintained routes were carried out to 

evaluate the feasibility of improving the network-level rutting survey using the tested method. 

The test site selection, data collection, and case study results are presented in the following 

sections. 

5.2.1 Test Site Selection 

In the process of test site selection, an effort was made to cover different, yet typical, pavement 

surface types across the state, including OGFC and Superpave, while targeting pavement 

sections have rutting of different severity levels. After reviewing the treatment criteria in GDOT, 

four groups of rut depths were identified for investigation. They are none (rut depth shallower 

than 1/4 in.), low (between 1/4 in. and 1/2 in.), medium (between 1/2 in. and 1 in.), and severe 

(greater than 1 in.). Also, the selected test site was required to have varying surface conditions 

(e.g. with little cracking, severe cracking, or potholes), other conditions (e.g. integrity of 

pavement marking and presence of railroad crossing), and varying traffic volumes. The first two 

factors are considered because they may impact the rut depth calculation accuracy. The traffic 

volume is considered because it implies the difficulty to carry out the manual survey and may 

result in different rutting configurations (e.g. the rut shape).  

To locate possible test sites, the annual survey results from GDOT were reviewed. A list of 

routes was identified based on the fact that the routes exhibited a variety of rut depths and 
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surface conditions. This list was then narrowed down by performing a preliminary visual 

investigation and considering the characteristics mentioned above. Finally, I-95, SR 275, SR 67, 

and Benton Blvd. were selected as primary test sites. Table 6.17 shows the detailed information 

about those test sites.  

SR 275 and SR 67 are two-lane rural roads. The SR 275 has a dead end and only serves a small 

amount of traffic. After visiting the test site, it was found that this test site has low to medium 

levels of rutting and few cracks. SR 67 experienced a much higher traffic volume and exhibited 

medium to severe cracking. I-95 is an interstate highway that connects Florida and Washington, 

D.C. The short section from MP101 to MP100 was selected as a test section. It is paved with 

SMA plus OGFC. The daily traffic volume is more than 50,000. This section is still in good 

condition and exhibits little rutting or few cracks. It has low severity level of raveling. The last 

test section is Benton Blvd., which is a county road. It was selected a test section because it had 

very severe rutting (as deep as 2 in.) and severe cracking and potholes.  

Table 6.17 Selected Test Sites  

Case # Road 
Section 
(MP) 

Surface 
Type 

AADT 
Rut Depth 

(in.) 
Surface Condition 

Date of Data 
Collection 

1 SR275 0-5 -- 1,890 1/8 – 3/4 Few cracks 04/21/2011

2 SR67 9-15 -- 7,570 0-1/8 
Medium to severe 

cracking 
04/21/2011 

3 I-95 101-100 OGFC >50,000 1/8 – 1/4 
Few cracks; low 

severity level 
raveling 

10/15/2010 

4 Benton -- -- -- 1/4 - 2 
Severe cracking and 

potholes 
05/10/2011 

5.2.2 Data Collection  

Once the test sites were finalized, a manual rutting survey was conducted on SR 275 and SR 67 

by the GDOT liaison engineers in accordance with GDOT’s protocol. A manual survey was not 

conducted on I-95 due to the high traffic volume. Then, 3D laser data was collected using the 3D 

laser at 5mm spacing along the driving direction. Data was collected on SR 275 three times so 

that the repeatability of the 3D laser can be evaluated. For other test sites, only one run of data 

was collected.  
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Figure 6.26 Test Site Locations 

5.2.3 Data Analyses and Results 

The collected 3D laser data was analyzed using the tested method. The analysis results are 

reported as follows:  

Case 1 – SR 275 

Figure 6.27 shows the raw data for the outside lane of SR 275, southbound (SB) from MP 0.8 to 

MP 0. As seen from figures, the rutting condition within this mile is relatively uniform. The 

maximum rut depth on this route is close to 1/2 in. The representative section identified during 

the manual survey is highlighted with the green rectangular. For the inside wheelpath, the rutting 

condition in the selected section can represent the majority of the rutting condition within this 

mile, whereas a relatively worse 100ft. was selected for the outside wheelpath. Several 

restrictions have prevented the manual survey from capturing the representative rut depth. First, 

it is not easy to observe the rutting from the windshield survey. So, the selection of a 100ft. 

representative section is mainly based on the cracking. Second, the selection of a 100ft. 

representative section is subjective. Finally, even if a representative section was located 

correctly, only a limited number of manual measurements were taken in the field. 
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In the next step, the longitudinal rut depth profiles (shown in Figure 6.27) that have outliers are 

filtered using the outlier removal algorithm presented above. The red profiles shown in Figure 

6.28 are the filtered data. With the filtered data, statistical analyses were conducted. Figure 6.29 

shows the histogram of the filtered rutting data. Obviously, the data has some positive skew and 

does not follow a normal distribution. Statistical indicators, including mean, median, 60th 

percentile, minimum, maximum, skewness, standard deviation, linear percentages of none, low, 

medium, and severe rutting, are calculated and presented in Table 6.18.  

 

Figure 6.27 Raw Data (SR 275 SB from MP 0.8 to MP 0) 

As seen from Table 6.18, the tested method shows high repeatability when reporting most 

statistics. For instance, the maximum absolute difference among mean rut depths collected from 

three runs is close to 0. The maximum absolute difference among the linear percentages of 

different severity levels of rutting is only 2%.  

Also, as shown in Table 6.18, the four candidates of representative rut depth, including mean, 

median, representative mode, and 60th percentile of rut depth, are very close to each other. The 

maximum percentage is less than 50% for the outside wheelpath, which implies that the rutting 

condition on the outside wheelpath is less uniform compared to the inside wheelpath. Hence, to 

advise a treatment that can be properly applied to the majority of this road section, a more 

conservative indicator, e.g. 60th percentile of rutting, is more appropriate.  



 

129 

 

 

Figure 6.28 Raw (Blue) and Filtered Data (Red) (SR275 SB from MP 0.8 to MP 0) 

 
(a) Run1 (b) Run2 (c) Run3 

 
(d) Run1 (e) Run2 (f) Run3 

Figure 6.29 Histogram of Filtered Data (SR 275 SB from MP 0.8 to MP 0)  
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Table 6.18 Reported Indicators (SR 275) 

Indicators 
InWP Rut Depth (1/8 in.) OutWP Rut Depth (1/8 in.) 

Run1 Run2 Run3 Avg Diff Run1 Run2 Run3 Avg Diff 

Mean 2.0 2.1 2.1 2.1 0.1 1.8 1.9 1.9 1.9 0.1 

Median 2.0 2.0 2.0 2.0 0.0 1.8 1.8 1.8 1.8 0.0 

60th Prct 2.1 2.2 2.1 2.1 0.1 2.0 2.0 2.1 2.0 0.1 

Rep Mode 2.0 2.0 2.0 2.0 0.0 1.9 1.9 1.9 1.9 0.0 

Max Prct 72% 72% 71% 72% 1% 49% 48% 48% 48% 1% 

Min 0.3 0.8 0.4 0.5 0.5 0.2 0.1 0.2 0.2 0.1 

Max 7.2 7.4 7.3 7.3 0.2 6.1 6.0 6.0 6.0 0.1 

Skewness 0.9 0.9 0.8 0.9 0.1 0.3 0.4 0.4 0.4 0.1 

Std 0.5 0.5 0.5 0.5 0.0 0.8 0.8 0.8 0.8 0.0 

None 51% 49% 50% 50% 2% 59% 59% 57% 58% 2% 

Low 49% 50% 50% 50% 1% 41% 40% 42% 41% 2% 

Medium 0% 0% 0% 0% 0% 1% 1% 1% 1% 0% 

High 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

 

Besides the section from MP 0.8 to MP 0, other sections on SR275 were analyzed similarly, and 

the analysis results are listed in Table 6.19, Table 6.20, and Table 6.21. As shown in Table 6.19, 

the statistical indicators, mean, median, 60th percentile of rut depth, and representative mode, 

provide similar rut depth for road sections with relatively uniform rutting condition and 

dissimilar values for some other sections. Still, the 60th percentile is suggested by GDOT 

engineers as the representative rut depth, so that 60% of the road section shows rutting smaller 

than the representative rut depth and can be maintained using the same treatment.  

Case 2 – SR67  

Similar analyses have been carried out for data collected from SR 67. The analysis results are 

summarized in Table 6.22,  

Table 6.23, and  

 

Table 6.24. Compared to SR 275, SR 67 has minor rutting issues. The majority of the test section 

has rutting shallower than 1/4 in. Four statistical indicators, mean, median, 60th percentile of rut 



 

131 

 

depth, and representative mode, provide similar rut depths for this test section. According to 

Table 6.22, the automatically measured rut depths are close to the manual measurements. This is 

mainly due to the fact that the rutting condition within this test section is relatively uniform.  

Table 6.19 Results for SR 275 

MP 
InWP Rut Depth (1/8 in.) OutWP Rut Depth (1/8 in.) 

Mean Median 
60th 
Prct 

Rep 
Mode 

Max 
Prct 

Manual Mean Median
60th 
Prct 

Rep 
Mode 

Max 
Prct 

Manual

5-4 1.1 1.0 1.1 1.1 94% 1 0.9 0.8 0.9 0.9 85% 1 
4-3 0.8 0.8 0.8 0.9 99% - 0.8 0.7 0.8 0.8 94% - 
3-2 1.1 0.8 0.9 0.8 79% - 0.9 0.8 0.9 0.8 82% - 
2-1 1.6 1.6 1.8 1.0 42% 2 1.6 1.4 1.6 1.2 58% 4 
1-0 2.4 2.2 2.4 2.1 60% 3 2.1 2.0 2.2 1.9 48% 3 
0-1 2.6 2.6 2.8 2.7 50% - 1.4 1.3 1.4 1.3 75% - 
1-2 1.8 1.7 2.0 1.3 45% - 2.3 1.9 2.1 1.2 39% - 
2-3 1.1 0.9 1.0 1.0 72% 0 1.4 0.9 1.1 0.8 67% 1 
3-4 0.8 0.8 0.8 0.9 99% 1 0.7 0.6 0.7 0.8 97% 1 
4-5 1.0 1.0 1.1 1.1 94% - 0.9 0.8 0.9 0.8 84% - 

 

Table 6.20 Results for SR 275 (Cont’d) 

 MP 
InWP Rut Depth (1/8 in.) OutWP Rut Depth (1/8 in.) 

Min Max Skewness Std Min Max Skewness Std 

SB 

5-4 0.3 2.8 0.4 0.3 0.2 3.9 1.5 0.4 
4-3 0.3 2.4 0.8 0.2 0.2 6.5 3.5 0.4 
3-2 0.1 4.2 1.7 0.7 0.2 5.1 2.6 0.6 
2-1 0.3 5.8 0.4 0.8 0.0 7.4 1.5 1.0 
1-0 0.0 9.8 2.4 0.9 0.2 13.8 2.6 1.1 

NB 

0-1 0.0 4.7 -0.2 0.7 0.2 4.7 1.2 0.5 
1-2 0.3 8.5 0.7 0.9 0.2 8.6 1.1 1.4 
2-3 0.1 4.5 1.7 0.7 0.1 9.3 2.6 1.5 
3-4 0.3 2.5 1.4 0.2 0.2 4.1 2.0 0.3 
4-5 0.4 3.5 2.1 0.3 0.2 3.3 1.1 0.4 
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Case 3 – Benton Blvd SB  

Similar analyses have been done to a road section of Benton Blvd. Figure 6.30(a) shows the 

roadway environment, and Figure 6.30(b) shows a short section with severe rutting and alligator 

cracking. The 3D laser data collected from Benton Blvd. was processed. The raw rut depth data 

is presented in Figure 6.31. As seen from the figure, the rutting condition within this mile is less 

uniform. The rut depth ranges from 1/4 in. to 2 in. Also, the rut depth data is noisy because the 

severe rutting on this road section is accompanied by alligator cracking, as shown in Figure 

6.30(b). After applying the noise removal algorithm, the outliers were removed. The filtered data 

is shown in Figure 6.32. Then, statistical analysis was carried out. The results are presented in 

Figure 6.33 and Table 6.25. As shown in the table, the standard deviation of the rut depths in this 

test section is relative high, greater than 1/8 in. The representative mode is 3.0 and 1.8 for inside 

and outside wheelpaths. The maximum percentage is only 31% and 39%. This concurs with 

previous observation that the rutting condition within this section is less uniform.  

Case 4 – I-95 SB from MP101-MP100 

Figure 6.34 shows the raw data for outside lane of I-95 SB from MP 101 to MP 100. The 

majority of the inside wheelpath shows low severity level rutting, which is between 1/4 in. and 

1/2 in.; the outside wheel path does not have much rutting, and the rut depth is less than 1/4 in. A 

localized spot between locations 4,500ft. and 5,000ft. has more than 1/2 in. rutting, as shown in 

Figure 6.34(b), approaching the end of this mile on the inside wheelpath.  

Table 6.21 Results for SR 275 (Cont’d) 

 MP 
InWP Rut Depth (1/8 in.) OutWP Rut Depth (1/8 in.) 

None Low Medium High None Low Medium High

SB 

5-4 100% 0% 0% 0% 98% 2% 0% 0%

4-3 100% 0% 0% 0% 99% 1% 0% 0%

3-2 85% 15% 0% 0% 95% 5% 0% 0%

2-1 70% 30% 0% 0% 76% 20% 4% 0%

1-0 36% 59% 5% 0% 50% 47% 3% 0%

NB 

0-1 19% 79% 2% 0% 90% 10% 0% 0%

1-2 63% 36% 1% 0% 55% 30% 15% 0%

2-3 87% 12% 1% 0% 84% 9% 7% 0%

3-4 100% 0% 0% 0% 100% 0% 0% 0%

4-5 98% 2% 0% 0% 99% 1% 0% 0%
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Table 6.22 Results for SR67 

MP 
InWP Rut Depth (1/8 in.) OutWP Rut Depth (1/8 in.) 

Mean Median 
60th 
Prct 

Rep 
Mode 

Max 
Prct 

Manual Mean Median 
60th 
Prct 

Rep 
Mode 

Max 
Prct 

Manual

15-14 1.4 1.4 1.5 1.4 75% 1 0.7 0.6 0.7 0.8 96% 1 
14-13 1.3 1.3 1.4 1.3 80% 1 0.6 0.5 0.6 0.6 97% 1 
13-12 1.0 0.9 1.0 1.0 95% 1 0.4 0.3 0.4 0.7 100% 1 
12-11 1.2 1.2 1.3 1.1 85% 1 0.6 0.5 0.6 0.7 96% 1 
11-10 1.2 1.1 1.2 1.1 77% - 0.5 0.4 0.4 0.7 96% - 
10-9 1.4 1.3 1.4 1.3 69% - 0.6 0.4 0.5 0.7 88% - 
9-10 1.3 1.2 1.3 1.2 75% 1 0.6 0.5 0.6 0.6 89% 1 

10-11 1.1 1.1 1.2 1.1 88% 1 0.4 0.3 0.4 0.6 97% 1 
11-12 1.4 1.3 1.4 1.4 80% - 0.5 0.4 0.4 0.7 97% - 
12-13 1.0 1.0 1.1 1.0 86% - 0.3 0.3 0.3 0.6 100% - 
13-14 1.1 1.1 1.2 1.1 81% - 0.4 0.3 0.3 0.6 97% - 
14-15 1.0 1.0 1.0 1.0 96% - 0.3 0.3 0.3 0.6 99% - 

 

Table 6.23 Results for SR67 (Cont’d) 

 MP 
InWP Rut Depth (1/8 in.) OutWP Rut Depth (1/8 in.) 

Min Max Skewness Std Min Max Skewness Std

SB 

15-14 0.1 3.8 0.0 0.5 0.0 4.9 3.1 0.3

14-13 0.3 2.7 0.4 0.4 0.1 2.3 0.9 0.3

13-12 0.3 2.2 0.4 0.3 0.1 1.9 2.0 0.2

12-11 0.2 4.1 1.3 0.4 0.1 2.6 1.2 0.3

11-10 0.1 3.8 0.9 0.5 0.1 7.7 8.3 0.5

10-9 0.0 6.0 1.6 0.6 0.1 9.8 6.3 0.8

NB 

9-10 0.0 3.7 1.2 0.5 0.0 5.1 2.3 0.4

10-11 0.2 2.9 0.7 0.3 0.1 3.9 4.0 0.3

11-12 0.2 3.9 0.8 0.4 0.0 6.6 6.7 0.5

12-13 0.3 2.6 0.7 0.3 0.1 1.9 2.3 0.1

13-14 0.2 3.2 0.8 0.4 0.0 10.1 7.3 0.6

14-15 0.3 2.3 0.4 0.2 0.1 2.0 3.6 0.1
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Table 6.24 Results for SR67 (Cont’d) 

 
MP 

InWP Rut Depth (1/8 in.) OutWP Rut Depth (1/8 in.) 
None Low Medium High None Low Medium High

SB 15-14 91% 9% 0% 0% 99% 1% 0% 0%

14-13 95% 5% 0% 0% 100% 0% 0% 0%

13-12 100% 0% 0% 0% 100% 0% 0% 0%

12-11 98% 2% 0% 0% 100% 0% 0% 0%

11-10 94% 6% 0% 0% 99% 0% 1% 0%

10-9 86% 14% 0% 0% 98% 1% 1% 0%

NB 9-10 91% 9% 0% 0% 99% 1% 0% 0%

10-11 99% 1% 0% 0% 99% 1% 0% 0%

11-12 93% 7% 0% 0% 98% 1% 1% 0%

12-13 99% 1% 0% 0% 100% 0% 0% 0%

13-14 96% 4% 0% 0% 98% 1% 1% 0%

14-15 100% 0% 0% 0% 100% 0% 0% 0%

 

 
(a)     (b) 

Figure 6.30 Roadway Environment (Benton Blvd.) 

 

Figure 6.31 Raw Data (Benton Blvd.) 
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Figure 6.32 Raw (Blue) and Filtered Data (Red) (Benton Blvd.) 

 

Figure 6.33 Histogram of Rut Depth Measurements (Benton Blvd.) 

 

Figure 6.34 Raw Data (I-95) 
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Figure 6.35 shows the raw data (blue) as well as filtered data (red). The noise removal method 

removed the outliers and smoothed the profile. The filtered data is then used as the input for 

statistical analysis. The analysis results are shown in Figure 6.36 and Table 6.25. The maximum 

percentage is 73% and 76% for the inside and outside wheelpaths, which indicates that the 

rutting condition is relatively uniform on this road section.  

 

Figure 6.35 Raw (Blue) and Filtered Data (Red) (I-95) 

The above case studies on the four selected road sections indicate that 

 The tested network-level rutting survey method has good repeatability.  

 The tested method can report the representative rut depth, i.e. the 60th percentile, as 

suggested by engineers from GDOT. The representative rut depth can be directly fed into 

COPACES, the pavement condition database managed by GDOT, to support pavement 

management and maintenance. 

 The tested method can also report other statistical indicators, e.g. mean, maximum, standard 

deviation, and linear percentage of none, low, medium, and severe rutting, which are useful 

in support of the network-level pavement management decision making. 
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Figure 6.36 Histogram of Rut Depth Measurements (I-95) 

Table 6.25 Indicators Reported (Benton Blvd. and I-95) 

Indicators 
Rut Depth on Benton (1/8 in.) Rut Depth on I-95 (1/8 in.) 

InWP OutWP InWP OutWP 
Mean 3.4 2.2 2.3 1.6 

Median 3.2 2.0 2.2 1.4 
60th Prct 3.6 2.3 2.3 1.6 

Rep Mode 3.0 1.8 2.1 1.4 
Max Prct 31% 39% 73% 76% 

Min 0.0 0.2 1.2 0.6 
Max 13.4 13.0 6.8 4.7 

Skewness 1.2 2.1 2.3 1.0 
Std 1.6 1.2 0.7 0.5 

None 15% 50% 33% 81% 
Low 54% 43% 62% 19% 

Medium 29% 7% 4% 0% 
High 2% 0% 0% 0% 

5.2.4 Computing Consideration 

This subsection discusses the determination of an adequate sampling interval and the 

performance (i.e. processing speed and data storage need) of the tested method. According to 

literature review, there is little consistency on the sampling interval used by different state 

transportation agencies. Usually, there is a balance between the sampling interval and the 

processing time. The smaller the interval, the more accurate the network-level survey results, 

whereas the longer the processing time. To determine an adequate sampling interval, this 

subsection evaluates the impact of the sampling interval on the accuracy of network-level rutting 
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survey and the data processing time. The second part of this subsection assesses the data storage 

need when using the tested method for network-level rutting survey. The potential means to 

further reduce the data storage needs are recommended.  

Sampling Interval and Network-level Survey Accuracy 

To establish the relationship between the sampling interval and the network-level survey 

accuracy, experimental tests were conducted using the data collected from Benton Blvd. because 

the rutting on it is less uniform. The less uniform the rutting is, the greater the impact of 

sampling interval on the survey accuracy is. Four sampling intervals, 5mm, 6 in., 1 ft., and 10ft., 

are analyzed. The rutting statistics are reported based on the TxDOT’s and PennDOT’s survey 

protocols.  

 

The test results are shown in Table 6.26. As seen from the results, all indicators, besides 

minimum and maximum rut depth, are insensitive to the sampling interval when the report 

interval is 0.5 mi. If the statistics are reported every 0.1mi, the sampling interval, 10ft. instead of 

1ft., makes notable changes on the statistical values. Therefore, an adequate sampling interval 

partially depends on the report interval. When statistics are reported every 0.1 mi, 1ft. can be the 

maximum sample interval without compromising the measurement accuracy; while the sampling 

interval can be increased to 10ft. when we are reporting at 0.5mi intervals.  

Sampling Interval and Processing Time 

To estimate the relationship between the sampling interval and the processing time (per mile), 

experimental tests were conducted on a computer with a Windows 7, 64-bit operating system 

that has i7 CPU@2.67GHz and 12GB RAM. Both road sections on SR 275 and Benton Blvd. are 

analyzed. For each case, 200 data files are tested. Each data file contains data collected from a 

4m-wide and 5m-long section at 5mm intervals. Six sampling intervals, i.e. 5mm, 50mm, 

100mm, 150mm, 300mm, and 2.5m, are analyzed. Two of those intervals, i.e. 150mm and 

300mm, have been used by multiple state transportation agencies. 
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Table 6.26 Impact of Sampling Interval on Rutting Condition Assessment Accuracy 

State 
Highway 
Agency 

Indicators 
Benton (InWP) Benton (OutWP) 

5mm 6in. 1 ft. 10 ft. 5mm 6in. 1 ft. 10 ft. 

TxDOT 
(0.1 mi) 

Mean 1.0 1.0 1.1 1.1 3.1 3.1 3.1 3.1 

Min 0.2 0.3 0.3 0.3 0.1 0.2 0.2 0.7 

Max 3.6 3.6 3.6 3.6 6.3 6.3 6.3 6.0 

Std 0.4 0.4 0.4 0.6 1.3 1.3 1.3 1.3 

None 97% 97% 97% 96% 25% 25% 25% 22% 

Low 3% 3% 3% 4% 44% 43% 43% 50% 

Medium 0% 0% 0% 0% 31% 31% 31% 28% 

Severe  0% 0% 0% 0% 0% 0% 0% 0% 

PennDOT 
(0.5 mi) 

Mean 1.8 1.8 1.8 1.8 1.9 1.9 1.9 1.9 

Min 0.2 0.3 0.3 0.4 0.2 0.2 0.2 0.4 

Max 4.7 4.7 4.7 4.3 8.6 8.6 8.6 8.4 

Std 0.8 0.8 0.8 0.8 1.4 1.4 1.4 1.5 

None 66% 66% 66% 66% 68% 68% 68% 69% 

Low 33% 33% 33% 33% 20% 20% 21% 21% 

Medium 0% 0% 0% 0% 11% 11% 11% 9% 

Severe  0% 0% 0% 0% 0% 0% 0% 0% 

 

The test results, shown in Table 6.27, Figure 6.37, and Figure 6.38, indicate that the processing 

time is similar when data from either SR 275 or Benton Blvd. are processed. This means that the 

processing time is not impacted by the amount of cracking on the pavement surface. 

Additionally, the miles of data processed per hour decrease significantly when the sampling 

interval increases from 5mm to 50mm (2 in.), and, then, go flat gradually when the sampling 

interval increases from 50mm (2 in.) to 2500mm (100 in.). The time needed to process 1-mile 

long data become less than 0.1 hr if the sampling interval is 4 in. or greater. There may be some 

I/O processes, e.g. reading the input and writing the output, inside the algorithm that cannot be 

saved by increasing the sampling interval. If the sampling interval is 1ft., within one hour, 13 mi 

of data can be processed and rut depth values can be obtained.  
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Table 6.27 Sampling Interval vs. Processing Time 

Sampling Interval (mm) 5 50 100 150 300 2500 

Process Time per Mile (hr) 
SR275 0.65 0.12 0.1 0.09 0.08 0.07 

Benton 0.65 0.13 0.1 0.09 0.08 0.07 

Processed Data per Hour 

(mi) 

SR275 1.5 8.4 10.5 11.4 12.9 14.7 

Benton 1.5 7.8 10.2 11.4 13.1 14.8 

 

 

Figure 6.37 Sampling Interval vs. Data Processed per Hour (mi) 

 

Figure 6.38 Sampling Interval vs. Data Processing Speed (mi/hr) 

 

 

 



 

141 

 

Aggregation Interval and Network-level Survey Accuracy 

According to a literature review of state DOTs' survey practices, most state DOTs use 0.1 mi as 

the aggregation interval when processing the automatically collected rutting data. This 

subsection estimates the relationship between the aggregation interval and the network-level 

rutting survey accuracy. Experimental tests were conducted using the data collected from SR 275 

and Benton Blvd. The rutting data was aggregated into 0.1mi and 1 mi, respectively. The results 

indicate that there is significant variation within the 0.1mi for data collected from Benton Blvd., 

as shown in Figure 6.40; the rutting condition on SR 275, shown in Figure 6.39, is relatively 

uniform. It is suggested that when the standard deviation is high, e.g. greater than 2 (of 1/8 in.), 

the aggregation into 1mi intervals will lose significant details. A smaller aggregation interval is 

more appropriate for road sections with large variation.  

 

Figure 6.39 Aggregated Rut Depths at 0.1mi Intervals (SR 275 MP0-1 OutWP, Std = 0.5 of 

1/8in.) 

 

Figure 6.40 Aggregated Rut Depths at 0.1mi Intervals (Benton Blvd. InWP, Std = 1.6 of 1/8 

in.) 
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Data Storage Need  

According to Table 6.28, a significant amount of hard disk space to store the raw data, i.e. 3D 

continuous transverse profiles, is required. If surveying the 18,000 centerline miles of highway 

maintained by GDOT, at least 33.0TB (=18000mi/100mi*94GB*2lanes) hard disk storage per 

year is needed. Thus, storing the raw data will demand tremendous amounts of hard disk storage 

space. This will require extra effort to manage and maintain the huge amount of data. More 

importantly, the raw data itself provides little information that can directly support pavement 

management decision making. Therefore, storing all the raw data is not recommended.  

The processed results from the raw data are stored in XML files. The storage need for XML files 

is 4.2 TB for 18,000 lane miles of highway when the sampling interval is 5mm. The data storage 

need is 13% and 0.6% of the need to store all the raw continuous transverse profiles. The XML 

files can be read to obtain longitudinal rut depth profiles. The storage need for longitudinal rut 

depth profiles is further reduced. Assume that each rut depth value requires 4 bytes storage 

space. Thus, totally, 85.8GB (=18000mi×1600m/mi×1000mm/m / 5mm×2WP×2lanes×4bytes) 

disk storage is needed per year. This is much less than the space needed to store all the raw data. 

Up to this point, the data storage need has been reduced by around 99.7%. In the future, this 

storage need can be further reduced by aggregating and reporting rut depth into bigger intervals.  

Table 6.28 Data Storage Need per Inspection for every 100-Lanemile of the Highway 
Network 

Sampling Interval Raw Data XML Files Longitudinal Rut Depth Profiles 

5mm 
94GB 

(3MB/5m) 
11.9GB 

(390KB/5m) 
250MB 

(8KB/5m) 

 

5.3 Discussions  

Several issues have been identified during the tests are listed as follows:  

 Issues of vehicle wandering 

An example is given in Figure 6.41. Figure 6.41 (a) is the 3D laser data collected in a normal 

driving. Figure 6.41 (b) is the data collected when the vehicle wandered. Because of the 

vehicle wandering, the left lane marking is missing, and the right lane marking is almost in 
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the middle of the right sensor data, as shown in Figure 6.41 (b). For the road section in 

Figure 6.41 (b), both rut depths for the right and left wheelpaths can be underestimated when 

they are calculated using the half-lane profiles.  

  

        
        (a) Without vehicle wandering           (b) With vehicle wandering 

Figure 6.41 Issue of Vehicle Wandering 

 Issue of half-lane rut depth calculation  

Currently, rut depths are calculated for half-lanes. An assumption is made that the transverse 

profile is symmetrical to the center line. However, this assumption may not hold and the rut 

depth for some cases may be underestimated. Figure 6.42 shows such an example. Figure 

6.42(a) is the half-lane profile collected by the left sensor and Figure 6.42(b) is the one by the 

right sensor. If pinning these two half-lane profiles, a full-lane profile can be obtained. As 

shown in Figure 6.42, the hump in the middle was captured by the left sensor and not the 

right sensor. Therefore, the rut depth for the right wheelpath can be underestimated if it is 

calculated using the right half-lane profile only.  

 
(a) Left profile    (b) Right profile 

Figure 6.42 Issue of Half-lane Rut Depth Calculation 
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 Issue of lane marking detection  

In the 3D laser, the lane marking detection is performed on fixed-length road sections. Each 

of such road section is 5m long for this study, and only the portion of transverse profile 

between the lane markings is used for rut depth calculation. Thus, it is crucial to accurately 

detect lane marking for rut depth calculation. However, current 3D laser software is not 

robust enough to detect the lane marking correctly for all road sections. An example is shown 

below.  

Figure 6.43 shows the lane marking detection results for three adjacent road sections, S1, S2, 

and S3. The purple straight lines are the detected lane markings. Compared to S1 and S3, 

S2’s detected lane markings shift to the right significantly. This shift causes abrupt changes 

of rut depth and rut width. As shown in Figure 6.44, both abrupt changes occur at boundaries 

between adjacent sections. 

     
         (a) S1          (b) S2         (c) S3 

Figure 6.43 Lane Marking Detection Results 
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Figure 6.44 Issue of Missing Lane Marking 

 Issue of rut depth calculation in the presence of other distresses (e.g. cracking) or objects 

A detailed examination of this issue has been presented in section 5.1.2. It is concluded that 

the current 3D laser is not able to provide accurate rut depth calculation when rutting is 

accompanied with transverse cracks (especially for cracks wider than 5mm), potholes and 

patches, raised pavement markings, rail tracks, and other objects (e.g. tree branches on the 

road). 

6. Isolated Rutting Detection 

The benefit of the emerging 3D laser technology is more than improving the network-level 

rutting measurement accuracy. The detailed information can also be used to further support 

project-level pavement maintenance, such as the isolated rutting detection. This section presents 

a method to identify the isolated rutting using the 3D continuous transverse profiles collected by 

the 3D laser. Pavement engineering knowledge has been extensively incorporated to establish the 

criteria for identifying isolated ruts. Finally, case studies were performed using the data collected 

on I-95 and SR 307 near Savannah, Georgia. 

6.1 Research Need 

Isolated rutting occurs at localized locations, such as spots experiencing high stress/strain 

conditions or spots with base failure. It reduces serviceability and causes risk for drivers, who 

may lose control of their vehicles when they maneuver on the uneven road or hydroplane when 

S1 S2 S3 
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water accumulates in wheelpath ruts. More importantly, unlike continuous rutting, isolated 

rutting is relatively short and unexpected, which makes it even more dangerous. This safety issue 

urges transportation agencies to treat the deformed, isolated sections in a timely manner to 

mitigate potential safety problems. To remedy isolated rutting, a low-cost, localized treatment 

can be applied. It is much more cost-effective than upgrading the entire roadway, which is still in 

sound condition. In order to apply low-cost, localized treatment, it is imperative to have an 

efficient method to detect all isolated ruts.  

In the past, it was a challenge to detect isolated rutting due to the lack of data acquisition 

technology and an automatic detection method. Traditionally, transportation agencies survey and 

record only network-level rutting. The isolated rutting information is not collected in current 

PMSs because it is time-consuming and difficult to collect manually. To the best of our 

knowledge, there is no published automated method that detects isolated rutting.  

With the advance of 3D laser imaging technology, 3D continuous pavement transverse profiles 

can be acquired at highway speed and the sensing system can, potentially, be used to detect 

isolated rutting. Figure 6.45 shows an example of 3D data collected at 100km/hr. Different 

colors represent different elevations. In the transverse direction, there are 2,080 points covering 

half of a lane (typically 2m wide). The transverse resolution is 1mm. The spacing between 

transverse profiles along the driving direction is 5mm. The depth accuracy (in elevation 

direction) is 0.5mm. This high-resolution provides a unique opportunity to detect isolated rutting. 

 

Figure 6.45 An Isolated Rut in 3D Laser Data  
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6.2 Case Study – I-95 

The southbound lane of I-95 from MP 101 to MP 100 near Savannah, Georgia, was selected as a 

test site to evaluate the tested method. Figure 6.46 shows the location of the test site.  

 
Figure 6.46 Location of Test Site on I-95 

Test Results 
Figure 6.47 shows the longitudinal rut depth profile for the inside wheelpath, which is the blue 

line, and the filtered longitudinal rut depth profile, which is the red line. The total length of each 

profile is 5,350 ft., slightly longer than 5280 ft. (1 mi). This results from the difference between 

DMI reading and the actual roadway section length. The filtering results show that outliers have 

been removed.  

 

Figure 6.47 Raw Longitudinal Rut Depth Profile (Blue) and Filtered Profile (Red) 

Figure 6.48 and Table 6.29 summarizes the homogeneous segmentation results. Each break point 

on the red profile corresponds to the bound between two adjacent homogeneous segments. The 

values of those red line segments are the mean rut depths for each homogeneous segment. This 

homogeneous segmentation results were obtained when setting the minimum segment length, i.e. 

MinLen, as 10ft., and the minimum mean rut depth difference, MinDiff, as 1/8 in. As seen from 
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Figure 6.48, the homogeneous segmentation method has successfully captured every point where 

the pavement rutting condition changes significantly.  

Table 6.29 tabulates the homogeneous segmentation results, including the start MP, end MP, 

length, mean rut depth, and standard deviation. This table can be saved into databases and used 

to support project-level pavement management. 

Figure 6.49 and Table 6.30 show the isolated rut detection results. Two isolated ruts are detected 

(labeled as 1 and 2 in Figure 6.49). One is 342ft. long (from 1,346ft. to 1688 ft.) and the other 

one is 32 ft. long (from 1,968ft. to 2,000 ft.). The maximum rut depth is greater than 1/4 in. for 

both of them. The rut volume for those two isolated ruts is 42 ft3 and 3 ft3, respectively; the rut 

area is 1,917 ft2 and 184 ft2.  

 
Figure 6.48 Homogeneous Segmentation Results (MinLen = 10ft. and MinDiff = 1/8 in.) 

 

Table 6.29 Homogeneous Segmentation Results (I-95) 

Record # 
Start MP 

(ft.) 
End MP 

(ft.) 
Length 

(ft.) 
Mean Rut Depth  

(1/8 in.) 
Std  

(1/8 in.) 
1 0 1350 1350 2.4 0.3 
2 1350 1390 40 3.7 0.4 
3 1390 1522 132 4.7 0.5 
4 1522 1550 28 6.1 0.4 
5 1550 1602 52 4.7 0.3 
6 1602 1688 86 3.1 0.5 
7 1688 1970 282 2.0 0.3 
8 1970 2000 30 3.0 0.3 
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Figure 6.49 Detected Isolated Ruts 

Table 6.30 Isolated Rutting Detection Results (I-95) 

ID 
Start MP 

(ft.) 
End MP 

(ft.) 
Rut Length

(ft.) 
Max Rut Depth

(1/8 in.) 
Rut Volume 

(ft3) 
Rut Area

(ft2) 

1 1346 1688 342 6.1 42 1917 

2 1968 2000 32 3.1 3 184 

 
Verification in the Field 
A windshield survey confirmed that this highway section does not show much rutting, and only a 

short section is shown in Figure 6.50 (b); approaching the end of this mile on the inside wheel 

path, it exhibits an isolated rut. This isolated rut could cause the risk of hydroplaning. However, 

it is tedious and difficult to locate it through the manual survey. In contrast, the method 

developed in this section is capable of finding spots with high hydroplaning potential 

automatically for the whole roadway network at highway speed. Therefore, it is very valuable 

and can dramatically improve existing survey and pavement maintenance practices.  

 

(a) Roadway Environment   (b) Isolated Rut 

Figure 6.50 Isolated Rut Verification in Field (I-95) 

1 2 

MP100
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6.3 Case Study – SR307 

The SR 307 was selected as another test site. It is a road leading to the Savannah port (as shown 

in Figure 6.51) and experiencing high truck traffic. The general rutting condition for the road is 

1/8 in. or 1/4 in. However, the intersection of SR 307 and SR 21 shows significant deep rutting.  

 

Figure 6.51 Test Roadway Section on SR 307 

Test Results 

The isolated ruts on this test section were identified using the tested methods. The results are 

tabulated in Table 6.32. There are total six isolated ruts detected. Their location, length, 

maximum rut depth, rut volume, and rut area are obtained and presented in the table. Their 

length varies from 14 ft. long to 470 ft., and, the maximum rut depth is more than 1 in. Figure 

6.54 shows the detection results. The green squares mark the start point of an isolated rut and the 

yellow squares are the end points of each isolated rut. The dashed line is the threshold, which is 

1/4 in. As seen from the figure, #3 is the biggest isolated rut and would need localized treatment.  

 

Figure 6.52 Raw Longitudinal Rut Depth Profile (Blue) and Filtered profile (Red) (SR 307) 
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Table 6.31 Selected Homogeneous Segmentation Results (SR037)  

Record # 
Start MP 

(ft.) 
End MP 

(ft.) 
Length 

(ft.) 
Mean Rut Depth  

(1/8 in.) 
Std  

(1/8 in.) 
1 0 215 215 1.8 0.4 
2 216 235 19 2.9 0.4 
3 236 259 23 3.9 0.6 
4 260 415 155 2.4 0.6 
5 416 427 11 3.9 0.4 
6 428 535 107 2.7 0.5 
7 536 557 21 3.9 0.5 

 

The homogeneous segmentation results are shown in Figure 6.53 and in Table 3.31. The MinLen 

is set to be 10ft. and the MinDiff is set to be 1/8 in., as suggested by GDOT engineers. There are 

43 homogeneous segments for the longitudinal rut depth profile on the inside wheelpath. The 

detailed information about the first seven homogeneous segments, such as the start MP, end MP, 

mean rut depth, and standard deviation, is listed in Table 3.31. 

 

Figure 6.53 Filtered Data (Red) and Homogeneous Segmentation Results (Blue) when 

MinLen = 10ft. and MinDiff = 1/8 in. (SR 307) 

Verification in the Field 

The detection results were verified in the field by engineers from GDOT. Figure 6.55 shows the 

field verification results. Isolated ruts 4 and 6 can be clearly observed in the field since the depth 

is more than 1/2 in. deep. Some images taken from the field are shown in Figure 6.56. However, 

it is difficult to locate ruts 1, 2, and 3 in the field. The isolated rut 5 is at the railroad cross-

section. 
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Table 6.32 Isolated Rutting Detection Results (SR307) 

ID 
Start MP 

(ft.) 
End MP 

(ft.) 
Rut Length 

(ft.) 
Max Rut Depth 

(1/8 in.) 
Rut Volume 

(ft3) 
Rut Area 

(ft2) 

1 232 260 28 3.9 3 123 

2 414 428 14 3.9 2 69 

3 534 558 24 3.9 3 124 

4 640 1110 470 12.2 80 2546 

5 1160 1284 124 5.2 18 710 

6 1470 1542 72 6.6 7 338 

 
Figure 6.54 Detected Isolated Ruts (SR307) 

 

Figure 6.55 Field Verification (SR 307) 

1 52 3 4 6 
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Figure 6.56 An Isolated Rut (Spot #2) on SR 307 

6.4 Summary 

This section has presented another application, detection of isolated rutting. A method was tested 

to automatically detect isolated rutting using 3D continuous transverse profiles. Besides 

detecting the isolated rutting, the tested method can also compute the rut termini, maximum rut 

depth, rut area, and rut volume. A road section from MP 101 to MP 100 on southbound lanes of 

I-95 was tested. The case study results show that two isolated ruts on the test sites were detected 

successfully. Additionally, a road section (close to the intersection of SR 307 and SR 21) on SR 

307 was tested. Six isolated ruts were detected and verified through field survey. Both case 

studies demonstrate the feasibility of the tested method. 

7. Conclusions  

This chapter assessed the rut depth measurement accuracy using emerging 3D laser technology 

and the feasibility of using the 3D laser for network-level survey and isolated rut detection. The 

following is a list of the major findings:  

 3D laser has much better rut depth measurement accuracy than manual and rut-bar 

measurement methods because it has virtually 100% coverage in both transversal and 

longitudinal (driving) direction. The measurement error is within ±3mm in field and 

laboratory tests.  

 3D laser was used as the reference to quantify the measurement error of point-based rut bar 

systems. A comprehensive test has been conducted on multiple sensor configurations. The 

test results reveal that as the number of sensors increases, the measurement error decreases. 

The average measurement errors for 3-point and 5-point rut bar systems are about 63% and 

44%. With a 39-point equally-spaced rut bar system, the measurement error is about 8%. If 
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the number of sensors is more than 25, the measurement error drops constantly with a value 

below 10%.  

 A method has been tested to use the advanced 3D laser technology in network-level rutting 

survey. Case studies on several state-maintained and non-state-maintained routes indicate 

that the 3D laser system can provide detailed rutting information (e.g. min, max, standard 

deviation in one mile) besides the mean rut depth and can better support maintenance 

decision making at the network-level. The 60th percentile rut depth is recommended by 

engineers as an indicator of the representative rut depth. 

 A method has been tested to use the emerging 3D laser technology to detect isolated rutting 

in support of low-cost, localized treatment. Besides detecting the isolated rutting, the tested 

method can also compute the rut termini, maximum rut depth, rut area, and rut volume. Case 

studies demonstrate the feasibility of the tested method. 

In the future, the following studies are recommended: 

 Parallel processing can be applied to improve the data processing speed. Since the highway 

network can be broken down into smaller segments, and those segments can be processed 

independently; parallel processing may be conveniently applied to improve the data 

processing speed.  

 The profile-level data processing needs to be enhanced. Although the current rutting 

measurement algorithm works well, it has the difficulty to handle the cases like wide 

transverse cracking, potholes, and rail tracks well. Methods need to be developed to enhance 

the profile-level data processing and improve the rut depth calculation accuracy.  

 A customized application needs to be developed to fit into current network-level data 

collection practices. The current 3D laser is not application-oriented. It cannot be directly 

used to fit in with an existing pavement management system. A customization is needed for 

different transportation agencies’ practices. 

 A customized application and automatic algorithms need to be developed for isolated rut 

detection. The detected results can then be added to a PMS database to support localized 

treatment decision making. 
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Chapter 7 A Buffered Distance Method for Quantitatively 

Evaluating Performance of Crack Detection Algorithms  

1. Introduction 

Automatic pavement distress detection and classification has gained great attention among 

transportation agencies in the U.S. because current manual pavement condition evaluation is 

subjective, time-consuming, costly, and unsafe due the exposure to roadway hazards. Many 

transportation agencies, including the Texas Department of Transportation (TXDOT), the Florida 

Department of Transportation (FDOT), the Utah Department of Transportation (UDOT), and the 

Georgia Department of Transportation (GDOT), have invested resources to find ways to 

automate their pavement condition evaluation, including pavement distress detection and 

classification. Segmentation algorithms are the crucial step for automatic pavement distress 

detection and classification. Image segmentation is the process of differentiating the pavement 

image pixels containing cracks from the pixels without cracks and then segmenting the pavement 

image into crack and non-crack pixels. An effective segmentation algorithm is essential for 

developing a reliable, automatic pavement distress detection and recognition system that 

performs effectively in different pavement image conditions. Further, the Transportation 

Research Board Pavement Management Systems Committee (AFD10, 2007) identified a need 

for establishing fundamental pavement distress elements using automatic image processing, and 

that need can be addressed by a robust segmentation algorithm. A robust segmentation algorithm 

that accurately differentiates pavement distress pixels from the pavement pixels without distress 

can help establish fundamental distress elements that can be standardized and compared among 

different transportation agencies. These segmented distress elements can be easily classified into 

the distress types according to the definition of a particular transportation agency. Many image 

segmentation algorithms have been developed in the past decade, but there is no good method to 

quantitatively evaluate the performance of these segmentation algorithms. Qualitative assessment 

of image segmentation results by engineers is time-consuming and inefficient; consequently, 

there is a critical need to develop an objective and quantitative evaluation criterion that 

accurately reflects the assessment of a trained visual inspector. This will help the research 

community focus on the development of better and faster algorithms. We address this issue by 
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surveying different quantification methods and developing a new, novel quantification method 

that accurately reflects the assessment of trained engineers. 

Nazef et al. (2006) conducted a qualitative evaluation of pavement distress detection algorithms 

under different lighting conditions, but the performance of segmentation algorithms was not 

analyzed quantitatively. Others, like Koutsopoulos (1993), Wang (2007a), and Wang (2007b), 

did a comparison of segmentation algorithms to show the superiority of their particular 

algorithms, but the evaluations are, again, qualitative. Huang (2006) and Zhou (2006) measured 

the performance of their algorithms by devising a scoring criterion based on statistical 

correlation. Mean square error is another metric that is extensively used in image comparison 

studies. Another metric, called the Mahalanobis distance (Gonzalez and Woods, 2002), has also 

been described in literature. All the above evaluation methods use the entire image data for 

image comparison and do not target the crack regions specifically. This can obscure the results 

because crack pixels are typically only a small percentage of the total number of image pixels, 

and these scoring measures are not specifically sensitive to crack information. In addition, 

information about crack locations is not used in these evaluation methods. This may lead to the 

erroneous conclusion that two segmented crack images having different crack locations are the 

same simply because they have the same number of crack pixels in an image. Different 

quantification methods are also used in medical imaging and machine vision. They are briefly 

discussed to evaluate the possibility of applying them to pavement images. These methods 

include Receiver Operator Characteristic (ROC) (Tagashira et al., 2008; Song et al., 2007; and 

Kerekes, 2008) and Hausdorff distance (Beauchemin et al., 1998; Wang, 2002). Hausdorff 

distance enables the user to measure the distance between objects of different sizes. This can be 

helpful in the case of cracks, as the number of crack pixels in the ground truth image can be 

different from the crack pixels in the segmented images. A new quantification method based on 

buffered Hausdorff distance metric is proposed. The buffered distance metric incorporates the 

merits of both mean square error and Hausdorff distance metric. The proposed method is 

compared with four other possible quantification methods (mean square error, statistical 

correlation, Receiving Operating Characteristic, and Hausdorff distance) to demonstrate its 

superior capability to distinguish the performance of different segmentation algorithms.  
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2. A Quantitative Performance Evaluation Method 

This section presents the proposed quantification method that is based on buffered Hausdorff 

distance. Four other quantification methods are also briefly introduced in this section. The scores 

of different quantification methods are normalized to a common scale of 0 to 100 to facilitate our 

evaluation. Zero and one hundred represent the worst and the best performance possible for an 

algorithm, respectively, according to this scoring criterion. The proposed quantification method 

is presented below. 

2.1 A Proposed Method Using Buffered Hausdorff Distance 

The proposed buffered distance method incorporates the strengths of both mean square error and 

Hausdorff distance by modifying the Hausdorff distance metric. The Hausdorff distance is 

among the most popular distance measures that measures the distance between two curves and is 

a metric. It has been extensively used in literature (Beauchemin et al., 1998; Wang, 2002). For 

any two sets of points 1 2, ,......, nA a a a  and 1 2, ,......, mB b b b , 

( , ) max( ( , ), ( , ))H A B h A B h B A  (7.1) 

Where 

( , ) max min
b Ba A

h A B a b


 
 (7.2) 

( , )h A B  is the greatest of all the small distances from points of A to B and ( , )h B A  is the greatest 

of all the small distances from points of B to A. Figure 7.1 illustrates this distance measurement 

effectively. 
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Figure 7.1 Illustration of Hausdorff Distance 

The value of Hausdorff distance is large, even if one crack pixel in the segmented image is far 

from ground truth image crack pixels. Seeing this as a limitation of the Hausdorff distance 

metric, a new metric was developed that does not suffer from the shortcoming of the Hausdorff 

distance. The intuitive development of this measure is described next. A better distance measure 

than the Hausdorff distance is the modified Hausdorff distance given by ( , )MH A B : 

1 1( , ) max( ( , ), ( , ))MH A B h A B h B A  (7.3) 

Where 

1

1
( , ) min

b B
a A

h A B a b
m 



   (7.4) 

Once a crack pixel in the automatically segmented image falls substantially away from the 

closest pixel in the ground truth image, it no longer makes sense to heavily penalize this distance. 

Wrong detections beyond a certain distance should be penalized equally. This leads to a new 

distance measure, the buffered Hausdorff distance measure given by ( , )BH A B . 

2 2( , ) max( ( , ), ( , ))BH A B h A B h B A  (7.5) 

Where 
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2

1
( , ) min

b BL
a A

h A B sat a b
m 



   (7.6) 

Here, 
L

sat  indicates that when the distance of the crack pixel to the closest crack pixel in the 

other image exceeds a saturation value L, we use a constant value of L for the distance. The 

pseudo-code of the modified algorithm is given in Figure 7.3. The buffer L was chosen to be 20 

for our experiments. Figure 7.2 illustrates the buffered distance measure. The sample values of 

the buffered distance have a very intuitive meaning, too. The buffered distance can be interpreted 

as the average Euclidean distance between the crack pixels in the ground truth image and the 

segmented images. To compare other scoring methods with this buffered distance, a scaled 

scoring measure was derived and is shown below: 

( , )
Buffered distance score = 100 100

BH A B

L
   (7.7) 

The buffered distance effectively measures the performance of the segmentation methods and 

generates a score that corresponds with the qualitative performance of the particular method. In 

order to establish the merits of the buffered scoring distance, four other scoring measures were 

used in our experiments. Among the scoring measures, the buffered distance gives the best 

performance, as will be clear from the results. 
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Figure 7.2 Illustration of Buffered Hausdorff Distance Measure 

 

Figure 7.3 Algorithm for Buffered Hausdorff Distance Measure 
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2.2 Other Method Used for Comparison 

To compare the performance of the proposed scoring method, four other scoring methods were 

used: Mean Square Error, Statistical Correlation, Receiver Operator Characteristic, and 

Hausdorff distance. These scoring methods are described briefly below. 

2.2.1  Mean Square Error Method 

Mean Square Error (MSE) is one of the most commonly used performance metrics in the image 

processing literature, especially in image compression. MSE is the cumulative squared error 

between the two images, indicated by I1 and I2, respectively. 

2

1 1

1
( 1, 2) [ 1( , ) 2( , )]

M N

y x

MSE I I I x y I x y
MN  

   (7.8) 

Here, M and N are row and column lengths of the images, respectively, and (x, y) indicate the 

coordinates of the pixel location in the image. In order to compare MSE performance with other 

scoring measures, a scaled scoring measure that gives values between 0 and 100 is devised. As 

segmented images are binary images; the error for each pixel is either 1 or 0. Considering that 

cracks comprise a small portion of an image, we analyzed 150 different pavement images to 

compute the maximum crack pixels as a percentage of total pixels. Observations showed that this 

percentage never exceeded 5%; hence, more than 5% error between two images was considered 

the worst segmentation performance. Using this fact, a reasonable, scaled scoring measure based 

on the MSE was derived and is given by the following equation: 

1
MSE score = 100 ( 1, 2) 100

0.05
MSE I I   (7.9) 

2.2.2  Statistical Correlation Method 

Statistical correlation is another measure used to evaluate performance in the existing literature. 

It is given by the correlation coefficient between two images. 

( 1, 2)
( 1, 2)

1 2

Cov I I
Corr I I

VarI VarI
  (7.10) 
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Where ( 1, 2)Cov I I  is the covariance between the two images, and 1VarI , 2VarI are the 

variances of the two images. As the correlation lies between -1 and 1, the scoring measure for 

correlation is derived using this information. 

( 1, 2) 1
Corr score = 100

2

Corr I I 
  (7.11) 

2.2.3  Receiver Operator Characteristic Method 

The Receiver Operator Characteristic (ROC) is a highly effective tool for image classification 

evaluation, and it has been extensively used in medical literature and machine learning 

(Tagashira et al., 2008; Song et al., 2007; and Kerekes, 2008). In the development of dynamic 

optimization algorithm (Alekseychuk, 2006), it was used to evaluate the performance of the 

segmentation algorithm. The ROC represents the dependence of the rate of correct detections and 

the rate of false detections. The correct detection (CD) rate is defined as the ratio between the 

number of areas or pixels correctly labeled as defective detectedN  to the number of truly defective 

areas trueN  on the image: 

det ected

true

N
CD

N
  (7.12) 

The false alarm (FA) rate is defined as the ratio between the number of false detection falseN  to 

the number of truly defective-free areas ( )all trueN N (where allN  
is the total number of areas on 

the image): 

false

all true

N
FA

N N


  (7.13) 

The ROC value is defined based on the ratio between FA and CD: 

FA
ROC

CD
  (7.14) 

For our experiments, correctly detected pixels in the segmented image needed to lie within a 

square of a 5-pixel width centered on a true crack pixel in the ground truth image. A scoring 
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measure based on ROC was derived for comparison purposes by taking the maximum value of 

the ROC to be 0.1. A ROC value above 0.1 would indicate an extremely poorly segmented 

image, which is not useful for further investigation. 

ROC score = 100 100
0.1

ROC
   (7.15) 

1.1.1.1 2.2.4 Hausdorff Distance Method 

The Hausdorff distance H(A,B) between two sets A and B was described in Section 2.1. 

Using the width of the ground truth image as a scaling factor, a scoring measure for the 

Hausdorff distance was calculated. 

( , )
Hausdorff score = 100 100

 

H A B

column width
   (7.16) 

3. Experimental Test 

3.1  Buffered Hausdorff Distance Over Four Other Quantification Methods 

For comparing the capability of the proposed quantification method to other methods, both 

real data and synthetic data simulating different pavement distress conditions were used. For 

the actual pavement distress images, GDOT pavement engineers visually marked the cracks 

(their actual locations) to establish the ground truth. Synthetic images were generated to 

demonstrate the comparative strength of the buffered distance method over other quantitative 

scoring methods. Figure 7.4 gives an overview of the experimental data presented in this section. 
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Figure 7.4 Overview of Experimental Tests  

Four segmentation algorithms were used to evaluate the capability of different quantification 

methods for being able to separate the performance of different segmentation methods. These 

segmentation algorithms include Canny edge detection (Canny, 1986), crack seed 

verification (Huang & Xu, 2006), the iterated clipping method (Oh et al., 1997), and the 

dynamic optimization method (Alekseychuk, 2006). Although a large data set of 100 images 

has been analyzed in our experiments, here we present the results the four segmentation 

methods on 5 GDOT images. The results obtained from these segmentation algorithms were 

visually inspected by trained GDOT pavement engineers to assess the comparative performance 

of the four algorithms. This known performance for each segmentation algorithm was then 

used to evaluate the capability of different quantification methods. For example, the 

engineers and authors observed that t h e  dynamic optimization based method gives 

substantially better performance than the other methods, qualitatively, for all the test images 

(Tsai et al., 2009). The underlined mean square error score and correlation score values in  
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Table 7.1 indicate that the dynamic optimization based method is not the best method for 

some images. Consequently, the results of these two scoring measures do not match the 

assessment of GDOT engineers. It is also found that the buffered distance score, ROC score, 

and Hausdorff distance score are consistent with the visual assessment, but the buffered 

distance score achieves the best score separation to distinguish the performance of different 

algorithms. 

Figure 7.5 uses Image 4 from the five images in Table 7.1 as an example to illustrate the 

performance of the proposed method. Based on the scoring measurement, we can see that the 

crack detection performances of the four algorithms are in the following order: (c) dynamic 

optimization, (f) iterated clipping, (d) Canny edge detection, and (e) crack seed verification. This 

is consistent with the visual inspection results. 

Two synthetic image data sets were generated for illustrating the better performance of buffered 

distance compared to Hausdorff distance and ROC, and to demonstrate a better score separation 

achieved by our proposed method. The first synthetic ground truth image, which is shown in 

Figure 7.6(b), was generated by marking isolated noise pixels, which are located far from the 

crack pixels, on top of a GDOT ground truth image, as shown in Figure 7.6(a). This synthetic 

ground truth image was compared to four test images generated by applying the four 

segmentation algorithms to the raw pavement image. Results in Table 7.2 and images in Figure 

7.6 clearly show that though Test Image1 has the best performance, the Hausdorff distance 

score and the mean square error actually list it as the worst-performing image. The problem is 

that Hausdorff distance is very sensitive to isolated noise outliers and does not reflect the overall 

performance of the segmentation method. The buffered distance measure accurately reflects the 

performance of test images and also achieves good score separation to distinguish their 

performance behavior. 
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Table 7.1 Scoring Measures for GDOT Images 

Image Dynamic 
Optimization 

Canny Edge 
Detection 

Seed 
Verification 

Iterated 
Clipping 

Image 1     

Mean Square Error 95.9941 95.1833 95.4276 96.6716 

Correlation 60.3986 49.8636 55.8749 58.7725 

ROC measure 99.6927 0 99.614 95.9945 

Hausdorff distance 97.6623 80.9665 39.3898 50.9328 

Buffered distance 91.6468 24.4089 72.4155 38.8489 

Image 2     

Mean Square Error 96.8028 96.1628 96.1355 96.6451 

Correlation 61.1738 49.8589 0 54.5732 

ROC measure 99.8143 0 0 92.5772 

Hausdorff distance 98.1278 41.0895 0 54.9892 

Buffered distance 92.7174 15.0362 0 22.2454 

Image 3     

Mean Square Error 95.6805 95.0156 95.0714 95.9808 

Correlation 58.551 49.846 54.24 59.6205 

ROC measure 99.5189 0 99.716 98.4453 

Hausdorff distance 96.9521 41.9934 55.3874 42.2313 

Buffered distance 91.8955 14.0205 17.5782 66.1937 

Image 4     

Mean Square Error 95.5108 94.7141 94.6804 95.5614 

Correlation 59.6935 49.9575 50.8001 58.3103 

ROC measure 99.6954 2.2489 99.7577 98.2338 

Hausdorff distance 98.0013 41.3101 0 40.6776 

Buffered distance 92.4423 14.9668 3.1376 64.0048 

Image 5     

Mean Square Error 95.4859 94.4584 94.5122 94.5391 

Correlation 61.5723 49.9428 53.6835 52.1224 

ROC measure 99.7451 0 99.7203 91.3818 

Hausdorff distance 97.432 49.3804 31.0443 50.6515 

Buffered distance 93.0536 16.1591 19.1754 24.4211 
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Figure 7.5 (a) Original Image; (b) Ground Truth Crack Map; (c) Dynamic Optimization 

Results (Score: 92.4423); (d) Canny Edge Detection Results (Score: 14.9668); (e) Crack 

Seed Verification Results (Score: 3.1376); (f) Iterated Clipping Results (Score: 64.0048) 

Table 7.2 Scoring Measures for Synthetic Image 1 

 Test Image 1 Test Image 2 Test Image 3 Test Image 4 

Mean Square Error 95.2962 94.6596 95.4198 94.8768 

Correlation 58.7137 50.0709 56.244 54.9956 

ROC measure 99.5161 36.5221 95.5748 98.683 

Hausdorff distance 44.7479 64.2952 69.6907 66.9031 

Buffered distance 80.9604 22.6031 57.0306 64.022 

 

The second synthetic ground truth image is illustrated in Figure 7.7. This synthetic image has a 

straight line that runs through the middle of the image. The Test Images 1, 2, and 3 are 
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horizontal translations of the ground truth image by 1, 2, and 3 pixels, respectively. Table 

7.3 shows the scoring measure results for the 3 images. It is seen that the ROC measure allots 

the same score of 100, reflecting the best performance, to both Test Image 1 and Test Image 2 

and a score of 0, reflecting the worst performance, to Test Image 3. This observation 

illustrates that ROC can show very different score value for two similar images. When the 

horizontal translation exceeds 2 pixels, then all crack pixels in the test image are classified as 

incorrectly detected. This problem happens around the boundary points where the classification 

decision changes from true detection to false detection. The buffered distance score still 

accurately reflects the performance of the test images, as it is not based on a hard decision 

rule like ROC. The combined results indicate that the buffered distance score is better than 

the other four scoring methods used in experiments. 

Table 7.3 Scoring Measures for Synthetic Image 2 

 Test Image 1 Test Image 2 Test Image 3 
ROC Measure 100 100 0 
Buffered Distance 95 90 85 

 

Based on the results, we examined the strength and weaknesses of each scoring method. Mean 

Square Error (MSE) takes into account error in the whole image and not just the error in 

location of crack pixels. Moreover, in its computation, MSE does not take into account the 

relative proximity of the crack pixels in the ground truth image to the crack pixels in the 

segmented image. Unless there is an exact overlap between the crack pixels in the ground truth 

image and the segmented image, the MSE score will be the same for the two, different, 

automatically segmented images. In other words, the MSE score stays the same irrespective of 

the relative proximity of the crack pixels in the automatically segmented image to the cracks in 

the ground truth image. This exact overlap is highly unlikely, considering that marking the 

ground truth image to such a degree of accuracy can be a tedious exercise. MSE can only be 

used on images of similar size and cannot selectively focus on the crack pixels in the image. 

Thus, it is not very useful for comparison of pavement segmentation algorithms. Like MSE, the 

correlation coefficient also requires exact overlap between crack pixels of the two compared 

images to get a high performance evaluation score. This coefficient also suffers from the 
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limitation that it can be applied only to similarly sized objects. Therefore, the non-crack 

pixels, which are larger in extent in all pavements, affect the correlation severely. Results of 

ROC are better compared to MSE and correlation scoring measure, but it is seen through 

results of the second synthetic image data set that qualitatively very similar segmented images 

can have very different ROC values. This happens due to the fact that ROC uses hard decision 

rules to classify pixels as false alarms or true defects. Hence, on the boundary of these 

decision rules, the ROC value can change abruptly, and very similar segmented images can 

have drastically different ROC values. The Hausdorff distance has the ability to measure the 

distance between only crack pixels in both the ground truth and segmented image, and, 

therefore, it can capture the local effectiveness of the segmentation algorithm. However, it is 

very sensitive to outliers or noise pixels, and Hausdorff score values change drastically even 

in the presence of one outlier. The buffered distance measure captures the local effectiveness 

of the segmentation algorithm and is not sensitive to outliers or noise pixels. It also achieves 

good score separation in the values for different segmentation algorithms, and it is the best of 

all the methods. The shortcoming of the method is that the buffer value L needs to be chosen 

heuristically. 
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Figure 7.6 (a) Original Ground Truth Image (b) Synthetic Ground Truth Image with 

added noise (c) Test Image 1 (d) Test Image 2 (e) Test Image 3 (f) Test Image 4 
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Figure 7.7 (a) Synthetic Ground Truth Image (b) Test Image 1 (Translation=1 Pixel) (c) 

Test Image 2(Translation=2 Pixels) (d) Test Image 3 (Translation= 3 Pixels) 

3.2  Buffer Size Selection 

The buffered Hausdorff distance method highly depends on a proper selection of the buffer size. 

The buffer size will influence the score provided by the method. On one hand, the introduction of 

a buffer to Hausdorff distance improves the method’s robustness for isolated noises; on the other 

hand, an improper selection of buffer size will reduce the effectiveness of the algorithm.  
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Figure 7.8 shows a pavement 3D laser data collected on Highway 80, and the image on the left is 

the raw range data. The images on the middle and right are ground truth cracks map-based on 

range data and crack detection results using the dynamic optimization method.  

   

Figure 7.8 Range Image (Left), Ground Truth Image (Middle), and Dynamic Optimization 

Detection Result (Right) for Image Collected on Hwy80 

3.3  Data Resolution 

The 3D-line-laser-provided crack detection algorithm was used to test images collected on SR 

275. Figure 7.9 shows the binary detection result image and the ground truth image. At the 

beginning, we used 1mm resolution image, i.e. 4160×5000, to establish the ground truth and 

detected results; however, as shown in Table 7.4, the resulting scores are very low. One possible 

explanation is that the resolution is too high that any tiny difference between the two images can 

enlarge the error and, therefore, lower the score. So, we resized the two images to 1040×1250 

and ran the test again. The results using resized images, as shown in the right columns in both 

tables below, gave better scores than the originally sized images. Similar results can also be 

found in the other test on another image collected on SR 275, as shown in Figure 7.10 and Table 

7.5.  

Again, the key point to utilizing the buffered Hausdorff distance as an effective performance 

evaluation tool is to choose the proper buffer size that fits best with the objective data set. Based 

on our preliminary test results, the buffer size of 20 pixels works well for the images with a 

resolution of about 1,000 pixels. 
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Figure 7.9 Ground Truth Image (Left) and Detection Result Image (Right) for Data 

Collected on SR275 

Table 7.4 Detection Evaluation Results for Figure 7.9 Using Buffer Hausdorff Distance 

Measure 

 Original (4160 x 5000) Resized (1040 x 1250) 
L=10 18.4891 65.0478 
L=20 18.8395 69.4417 
L=30 19.3536 71.8727 
L=50 20.5791 75.4049 
L=100 22.5010 80.3330 
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Figure 7.10 Ground Truth Image (Left) and Detection Result Image (Right) for Data 

Collected On SR275 

Table 7.5 Detection Evaluation Results for Figure 7.10 Using Buffer Hausdorff Distance 

Measure 

 Original (4160 x 5000) Resized (1040 x 1250) 
L=10 26.7066 57.8695 
L=20 26.9237 74.5179 
L=30 27.0371 80.1636 
L=50 27.2028 84.6801 
L=100 27.5346 88.0676 

3.4  Crack Width Consideration 

Similar to most of the other performance evaluation methods, the proposed buffered Hausdorff 

distance method will overlook the width information during its evaluation procedure. A synthetic 

image is generated to demonstrate this issue.  

As shown in Figure 7.11, the synthetic ground truth image on the left contains four simple 

straight line cracks, and these cracks have incremental widths. It is noticed from the detection 

results on the right that dynamic optimization can detect cracks in various shapes pretty well, yet 

the width information of a crack cannot be presented. This should be treated as a detection issue. 

However, when the proposed buffered method is employed to evaluate this result, it overlooks 

this issue and still gives a relative good score (over 85 at the buffer size of 20 pixels) for the 
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detection performance. Therefore, the proposed method does not have a good differentiation for 

crack width. This will be further studied and improved in future research. 

   

Figure 7.11 Synthetic Ground Truth Image and Crack Detection Result Image  

4. Applications 

4.1  Critical Performance Assessment of Pavement Crack Detection Methods 

Crack detection is the crucial first step of an automated pavement inspection system. Its 

accuracy and reliability are critical for subsequent distress classification and also for pavement 

maintenance operations. As mentioned above, the proposed buffered Hausdorff distance 

measurement can be used as an effective tool for the performance evaluation of crack detection 

algorithms. In this section, six different automatic crack detection algorithms will be 

quantitatively and objectively evaluated using the buffered Hausdorff distance method in order 

to demonstrate its capability. The six segmentation methods include statistical thresholding, 

Canny edge detection, a multi-scale wavelet method, a crack seed identification method, an 

iterative clipping method, and a method based on dynamic optimization.  

As the purpose is to compare the performance of the algorithms on a diverse image data set, 

instead of taking a large homogeneous image data set, we selected a data set of 30 images 

provided by GDOT. Most of the images we selected have a low signal-to-noise ratio, which 

makes it difficult to segment these images correctly. As a result, we could differentiate the 

performance of various image segmentation methods effectively. The images selected also 

had varying crack positions and lighting conditions to ensure objectivity in our evaluation. To 
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establish a ground truth crack map for performance comparison, GDOT pavement engineers 

visually identified the cracks, including hairline cracks. An example of an image with the labeled 

ground truth crack is shown in Figure 7.12 (b) and Figure 7.13 (b). 

Table 7.6 presents the results of t he  30 images with the scoring measure. We chose the 

buffered distance L to be 100, which was approximately 1/5th the width of the image. Figure 

7.12 shows one test image (Image 8 in Table 7.6) along with a ground truth crack map and the 

segmented crack maps obtained from six different segmentation methods. Figure 7.13 shows 

another image (Image 1 in Table 7.6). Image 8 has a distinct crack while Image 1 has a 

hairline crack, which is not very distinct. The results in Figure 7.13 (Image 1) clearly show the 

superiority of the dynamic optimization-based method over other methods, especially when 

segmenting indistinct cracks like hairline cracks. The diagnosis of such cracks is important for 

state DOTs to perform preventive maintenance. The crack is similar to the dark background in 

this image, so all the other thresholding methods fail, but the dynamic optimization-based 

method still performs well. 

There are two important characteristics of the algorithms that need to be analyzed: speed and 

accuracy. Overall, according to Table 7.6, the accuracy of dynamic optimization-based method 

is consistently better than other methods. The reason for the success of this method is the 

simultaneous use of both local and global properties of crack indicators. A global score function 

is maximized by the optimal use of connected pixels with predefined constraints, like minimal 

crack length and crack width. The statistical thresholding method, on the other hand, uses only 

local intensity variation at each pixel to classify a pixel as a crack or a non-crack pixel. 

Therefore, it is able to perform well only when the intensity value difference between crack 

pixels and background pixels remains the same throughout the image. 

This problem is somewhat corrected in the iterated clipping algorithm by dividing images into 

tiles and segmenting the cracks independently in each tile. As thresholds are iteratively 

calculated using statistical parameters for each tile, the method gives reasonably good results for 

images with no shadow effects, high noise, or extremely high variations of pixel intensity 

values. The Canny edge detection algorithm fails to perform consistently well for all 

images, as the optimal values of its parameters (edge strength and noise variance) are different 
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for each image, and the user has to choose these values heuristically. Another problem is that 

the use of a high noise variance value leads to detection of false edge contours due to the 

excessive smoothing effects of the Gaussian filter. This makes the algorithm unusable for 

images with high noise. A standard multi-scale wavelet algorithm is also unsuccessful in 

detecting cracks across images with varying conditions. The user has to adjust the parameters 

(numbers of scales, threshold values to separate edges from noise) manually according to the 

image being processed. The crack seed verification method performs reasonably well for images 

with uniform lighting conditions, but cracks in images with shadows and variable lighting are 

not segmented well. This is due to two reasons: the same crack seed verification threshold is 

used throughout the image, and there is no process in the algorithm to connect crack seeds 

together optimally. 
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Table 7.6 Scoring Measure Results from Six Segmentation Methods 

Image 
No. 

Ground 
Truth 
Image 

Dynamic 
Optimization 

Canny 
Edge 
Detection 

Statistical 
thresholding 

Multiscale 
Wavelet 

Seed 
Verifi-
cation 

Iterative 
Clipping 

1 100 82.1972 0.06 42.1712 7.4549 32.8086 26.0262 

2 100 95.4322 0 33.7171 3.0176 85.9156 27.1151 

3 100 97.8158 6.8753 39.9817 3.5542 0 29.9194 

4 100 92.4333 10.4488 51.2479 3.319 79.529 52.553 

5 100 96.8269 7.6233 8.8029 7.8489 0 35.3812 

6 100 84.6843 0 54.3576 79.8406 25.8227 91.191 

7 100 92.1084 72.9331 0 73.0214 0 63.2763 

8 100 95.5025 46.4897 74.3955 33.4004 84.4648 76.7994 

9 100 96.5181 53.2765 47.7759 28.9916 70.6659 57.001 

10 100 86.7466 47.891 19.3477 32.4488 68.5483 25.3135 

11 100 97.0262 60.4369 71.1571 41.9823 0 24.9242 

12 100 98.0994 58.3673 75.7174 29.6138 60.2402 22.9002 

13 100 98.0639 51.7698 42.108 28.7498 87.6033 38.9043 

14 100 98.3256 81.5556 57.9598 58.2655 94.1165 41.0476 

15 100 98.5435 51.1669 0 46.2362 0 21.3327 

16 100 98.104 28.3734 0 13.0095 28.8994 82.4285 

17 100 98.3791 31.3253 55.1757 11.7903 48.056 76.0915 

18 100 98.4885 23.1563 50.4836 9.07 10.925 74.5792 

19 100 85.8755 53.3817 52.2418 43.6245 25.3614 62.3795 

20 100 87.1256 47.4827 55.9621 42.6735 49.8315 66.1578 

21 100 98.7407 29.737 0 13.24 37.0823 49.4361 

22 100 98.6107 25.0095 0 11.2718 53.9077 30.0626 

23 100 98.5397 26.0818 8.7308 14.2073 11.3578 57.5891 

24 100 98.2064 6.035 0 7.0597 0 39.861 

25 100 97.8755 13.4397 0 6.7117 2.4976 30.8754 

26 100 70.44 9.1421 0 5.6159 2.129 29.1296 

27 100 98.6102 1.6972 0 8.3633 0 68.3227 

28 100 98.0784 0 61.1267 8.657 23.9357 57.8239 

29 100 97.2549 19.2092 89.9646 14.5819 53.723 76.2042 

30 100 98.2938 33.3356 50.7301 15.0086 24.3376 45.3196 
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Figure 7.12 (a) Original Image (Image 8) (b) Ground Truth Image (c) Canny Edge Image 

(d) Statistical Thresholding Image (e) Multi-scale Wavelet Image (f) Dynamic Optimization 

Image (g) Crack Seed Image (h) Iterative Clipping Image 
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Figure 7.13 (a) Original Image (Image 1) (b) Ground Truth Image (c) Canny Edge Image 

(d) Statistical Thresholding Image (e) Multi-scale Wavelet Image (f) Dynamic Optimization 

Image (g) Crack Seed Image (h) Iterative Clipping Image 
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The downside of the dynamic-optimization based method is its high processing time (101 

seconds per image) which makes it unusable for real-time processing. Canny edge detection (1.6 

seconds per image), the statistical thresholding method, the iterated clipping method (0.9 

seconds per image), and the seed verification method (1.2 seconds per image) are all easy to 

implement in real time if the code is optimized. The multi-scale wavelet method is, also, slow to 

implement (50 seconds per image), and the implementation time increases with an increase in 

the number of scales. 

4.2  Parameter Selection of Dynamic Optimization Crack Detection Algorithm 

Most crack detection algorithms will need a proper parameter configuration to optimize their 

performance. However, it is impossible to set a global parameter set, since parameters are 

usually highly related to the format and characteristics of input data. The proposed buffered 

Hausdorff distance provides a feasible and objective parameter selection solution for 

transportation agencies to optimize their crack detection algorithms based on their own data 

source. In this section, the proposed method will be used to optimize the parameter for dynamic 

optimization crack detection algorithm. 

For the dynamic optimization algorithm, there are several parameters which actually control its 

performance, including probability interest, SNR interest, maximum and minimum crack width, 

etc. Among these parameters, the probability interest is the predominant one that determines the 

algorithm’s flexibility for different image conditions, and this is also the parameter we adjusted 

to optimize the algorithm performance in most times. In this test, an actual pavement range 

image is selected to conduct a sensitivity test. Under the condition that all the other parameter are 

fixed, the probability interest increases incrementally, and we evaluate the crack detection results 

visually and by using the proposed buffered Hausdorff distance method. Figure 7.14 shows the 

crack detection results under several probability interest values. When the prob-interest value is 

low, there is much false positive detection. These false alarms are usually caused by the blurred 

edge on range image (due to slight road elevation, not crack). When the prob-interest value is too 

high, the algorithm is too strict to detect the entire crack line. Based on the experimental results, 

the proposed buffered Hausdorff distance has the capability to provide a feasible and objective 

parameter selection solution for crack detection algorithms, and transportation agencies can use 

it to optimize their automatic crack detection strategy based on their own data source. 
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(a)                                              (b) 

    

  (c)                                            (d) 

    

         (e)                                            (f) 

Figure 7.14 (a) Original Range Image; (b) Ground Truth Crack Map; (c) Detected Cracks 

at 0.78 (Score: 32.7443); (d) Detected Cracks at 0.84 (Score: 51.6057); (e) Detected Cracks 

at 0.90 (Score: 96.3730); (f) Detected Cracks at 0.96 (Score: 38.7939). 
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5. Conclusions 

Pavement distress segmentation is identified as a crucial step for automatic distress detection and 

classification. As the distress classifier definitions vary across states and regions, the testing of 

segmentation precision is of critical importance in assessing the reliability of pavement distress 

identification algorithms. A robust segmentation algorithm can establish fundamental distress 

elements that can be standardized and compared among different transportation agencies in the 

future. Researchers have developed many segmentation algorithms in the past, but it is difficult 

to compare the performance of different algorithms efficiently without an accurate quantitative 

method. This hinders the focused development of better segmentation algorithms. Our research is 

motivated by the need to develop a method to quantitatively evaluate the performance of 

different pavement distress segmentation algorithms. We developed a novel quantification 

method based on the buffered Hausdorff distance. In addition, the capability of the proposed 

method was compared with four other possible quantification methods (mean square error, 

statistical correlation, receiver operator characteristic (ROC) and Hausdorff distance). Both real 

and synthetic data were used to validate the capability of our proposed quantification method. 

The real data sets consisted of raw GDOT images and the resultant images of four 

segmentation algorithms. These data sets were visually inspected to assess the performance of 

different algorithms. It is found that the mean square error and statistical correlation do not 

reflect the assessed performance of different segmentation algorithms. Further, two sets of 

synthetic images were generated to show the better performance of the buffered distance method 

compared to the Hausdorff distance and the ROC method and to illustrate the good score 

separation achieved by the buffered distance method. 

The experimental results indicate that the buffered distance scoring measure accurately 

reflects the observed performance of the segmentation techniques and outperforms the other four 

quantification methods. It also achieves good score separation to distinguish between the 

performance of different methods. In addition, the raw value of the buffered distance can be 

interpreted as the average distance of the crack pixels in two images, and this provides a very 

valuable insight to researchers. Both mean square error and statistical correlation are not 

sensitive to the proximity or the distance of the crack pixels in the segmented image to the 

ground truth image. Hence, unless there is complete overlap of the crack pixels in the segmented 
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image and the ground truth image, the mean square error scores of two segmented images will be 

similar. This similarity is even more exaggerated by the fact that both these scoring measures 

have to use the entire image data in their computation, and a pavement image contains 

substantially more non-crack pixels than crack pixels. Therefore, the distinction between the 

performances of segmentation methods is hard to make using these two measures. The Hausdorff 

distance measure is very sensitive to outliers and is heavily influenced by isolated noise pixels 

that are far away from crack pixels. Thus, it does not accurately reflect the overall performance 

of a segmentation method. ROC is a useful scoring measure, but it suffers due to the fact that 

across a certain boundary all crack pixels are either detected as true defects or false alarms. This 

hard decision rule can lead to very similar images having extremely different ROC scoring 

measures. This point was highlighted by a synthetic image data set. 

In the future, more segmentation methods can be tested using the buffered distance 

scoring measure and compared with each other effectively. A standard comparison technique 

based on our scoring method can be devised and then employed by different transportation 

agencies to check the relative performance of their pavement distress detection system. A bigger 

data set that is composed of more complex cracks needs to be tested for the standardization 

procedure. Currently, the buffer value L for the buffered distance is chosen heuristically. In the 

future, an automatic technique to find a suitable buffer value L can be designed. In addition, 

sensitivity analysis that studies the effect of change in buffer value on the buffered distance will 

be carried out. Finally, the ROC method, which measures useful quantities, like false alarms 

and correct detection rates, can be used together with buffered distance method to evaluate the 

performance of the complete pavement distress detection and classification system. 
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Chapter 8 Asphalt Pavement Crack Detection Using 3D laser Data 

1. Introduction 

Pavement surface distress measurement is an essential part of a PMS for determining cost-

effective maintenance and rehabilitation strategies. Visual surveys conducted by engineers in the 

field are still the most widely used means to inspect and evaluate pavements, although such 

evaluations involve high degrees of subjectivity, hazardous exposure, and low production rates. 

Consequently, automated distress identification is gaining wide popularity among transportation 

agencies. 

For the past two decades, many researchers have been developing pavement distress detection 

and recognition algorithms using a 2D intensity-based imaging system and improved artificial 

and laser lighting. However, fully automated pavement distress detection and classification under 

different lighting and low intensity contrast conditions has remained a challenge. The National 

Cooperative Highway Research program synthesis document (McGhee, 2004) contains a 

comprehensive summary of highway practices, research, and development efforts in the 

automated collection and processing of pavement condition data typically used in network-level 

pavement management. Over the past decade, the greatest amount of research and development 

work focused on fully automated methods of distress data segmentation from images. The most 

widely reported automated method is known as WiseCrax. The vendor, Roadware Group, Inc., 

has noted several limitations of the WiseCrax technology (McGhee, 2004). First, all digital 

image analysis is limited by the quality and resolution of the images. WiseCrax can detect cracks 

approximately 3mm or wider. Second, crack visibility on certain types of pavement surfaces, e.g. 

chip seal, is not good. To detect this type of crack, human intervention is required. At present, no 

method has achieved completely satisfactory results. Different pavement distress data acquisition 

systems are briefly reviewed, and the corresponding issues are summarized below. 

Wang (2000) and Wang and Gong (2002) introduced a new automated system that is capable of 

collecting and analyzing pavement surface distress, primarily cracks, in real-time through the use 

of a high-resolution digital camera, efficient image processing algorithms, and multi-computer 

and multi-CPU based parallel computing. In Wang and Gong (2005) and Wang et al. (2008), 

image processing algorithms are assessed, and a new, low-power, laser-based 2D image 
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acquisition technique was discussed. The design, implementation, and feasibility issues related to 

the automated survey system were discussed by Wang (2000; 2004) and Wang and Tee (2002). 

E1-Korchi et al. (1991) pointed out the importance of lighting in determining the fraction of 

distress that went undetected. Nazef et al. (2006) comprehensively evaluated pavement distress 

systems, looking into different factors, including spatial resolution, brightness resolution, optical 

distortion, and signal-to-noise ratio. Xu (2005), as part of a Texas Department of Transportation 

(TxDOT) team, used artificial lighting as the ultimate solution for eliminating all shadows in an 

image and for improving data uniformity across different weather conditions. The TxDOT team 

designed a Halogen light with a special reflector to accomplish this objective. Hou et al. (2007) 

assessed the possibility of using 3D pavement stereo images for the automated crack analysis. 

The preliminary test showed that the accuracy of the system was about 5mm in the vertical 

direction. Ahmed and Haas (2010) used a low-cost photogrammetric system to reconstruct a 

detailed model of a pavement surface and demonstrate its capability. 

In summary, a 2D intensity-based imaging system has been the main data acquisition system 

used for the past two decades and is used by most state departments of transportation to collect 

data. Its intensity-based data acquisition method makes it sensitive to lighting effects. In general, 

because of the intensity-based data acquisition method, the performance of crack detection 

algorithms has been severely hampered in the presence of shadows, lighting effects, non-uniform 

crack widths, and poor intensity contrasts between cracks and the surrounding pavement 

surfaces. The challenge persists in spite of all the research work that has been carried out to 

improve image acquisition techniques by minimizing the lighting defects (Kaul et al., 2010). 

However, it is difficult to achieve consistent crack detection under different ambient lighting 

conditions when using natural light for illumination (Xu, 2005). Some illumination devices, such 

as LED lighting, are used to provide constant lighting that prevents the impact of shadows (Xu, 

2005; Xu, 2007). However, the beam width of the LED lighting is 0.5 in., which is not thin 

enough to provide sufficient depth resolution. The shallow cracks and/or thin cracks that have 

low-intensity contrast with the surrounding pavement are sometimes difficult to detect. Many 

algorithms are able to perform well only in an image data set that contains images that are not 

too different from each other. Otherwise, manual inputs are required to adjust the input 

parameters so that the algorithms can perform reasonably. Although 3D stereovision has been 
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studied recently, it is not mature enough to be used in practical application. Therefore, full 

automation of pavement distress detection has remained a challenge, especially for accurate and 

reliable detection (Kaul et al., 2010). 

2. 3D laser Imaging Technology 

With the advancement in sensor technology, a 3D line-laser-based pavement surface data 

acquisition system that can collect high-resolution 3D continuous pavement profiles for 

constructing pavement surfaces has become commercially available. This 3D laser system is 

different from the current 2D intensity-based imaging system. First, the 3D laser system is not 

sensitive to lighting effects when measuring crack ranges (i.e. elevations). Noise, like oil stains 

and poor intensity contrasts, will not interfere with the segmentation results using the acquired 

range data. As long as there is a distinguishable elevation difference between a crack and its 

surrounding background, the segmentation algorithm is able to capture the crack. Consequently, 

increased attention has been drawn to the development of this 3D laser data acquisition system 

and its potential application. Researchers from Texas (Li et al., 2010) have developed a research 

version of the 3D laser system and have demonstrated the system’s capability, but the developed 

system is still in the research stage.  

The tested 3D laser system in this research project employs high-speed cameras, custom optics, 

and laser line projectors to acquire 2D images and high- resolution 3D profiles of road surfaces 

that allow for automatic detection of cracks and the evaluation of macro-texture and other road 

surface features. Designed for both daytime and nighttime operation in all types of lighting 

conditions, the system is immune to sun and shadows and is capable of measuring pavement 

types ranging from concrete to dark asphalt. The 3D laser can be operated at a speed of up to 100 

km/h and cover pavement widths as wide as 4 meter on a travel lane. The 3D laser can achieve 

0.5mm crack depth resolution, collect 5,600 profiles per second, and operate at highway speed 

(100 km/h for collecting transverse profiles at an interval less than 5mm). Collected data is 

processed with the 3D-line-laser’s automated analysis software. Distress analysis results can then 

be used in association with a PMS to take appropriate pavement rehabilitative action.  

This system can produce data with much better granularity and, thus, has great potential to better 

detect pavement distress. This chapter will comprehensively evaluate the capability of the 3D 
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laser to conduct pavement surface condition surveys, including both 3D laser profiles data and 

the automatic crack detection algorithm provided in the 3D laser software platform. 

3. Advantages of 3D laser Data 

Since 3D laser data uses the range (elevation) information to describe pavement surface, it has 

several advantages over traditional techniques. Unlike 2D digital images, the range data is hardly 

influenced by different lighting conditions. Noise, like oil stains and poor intensity contrast, will 

not interfere with the segmentation result using the acquired range data. This section will 

demonstrate these advantages. 

3.1  Pavements under Different Lighting Conditions and Low Contrast Conditions 

Experimental tests were conducted to evaluate the feasibility of using 3D laser technology to 

detect pavement cracks under different lighting conditions and low contrast conditions. Two key 

components of the tests were designed to consistently and quantitatively evaluate the 3D laser 

data. First, the dynamic optimization-based crack segmentation method was employed to 

evaluate the quality of the 3D laser data. Second, the automated detection results were 

quantitatively evaluated by comparing them with the ground truth using a linear-buffered 

Hausdorff scoring method proposed by Kaul et al. (2010). The ground truth was manually 

digitalized and extracted from the 3D laser data, as suggested by other researchers (Lee & Kim, 

2006; Raman et al., 2004). 

To perform the study, two series of tests were used. One performed controlled laboratory tests on 

simulated cracks with known crack widths and depths, and the other performed field tests on 

roadways. In the controlled tests, the objective was to assess the capability of the 3D laser 

technology to detect cracks of different widths under different lighting conditions. Four crack 

widths (1mm, 2mm, 3mm, and 5mm) under two extreme lighting conditions (daytime and 

nighttime) were tested. The crack depth was about 19mm. The test procedure is briefly 

described. First, a controlled gap between two solid wood boards was used to simulate a 

pavement crack on the road. The width of the gap was measured before and after the test with a 

caliper, as shown in Figure 8.1. Second, an operator drove the integrated sensing vehicle to 

collect the 3D laser data from two wood boards. Third, with the 3D laser data, the dynamic 

optimization was employed to segment the simulated cracks. Meanwhile, the ground truth was 
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manually digitized and extracted from the 3D laser data. The objective crack segment scoring 

method was applied to quantitatively assess the performance of the crack segmentation results by 

comparing the segmented outcomes with the ground truth. The tests were conducted during 

daytime and nighttime, as shown in Figure 8.2. The test results are summarized in Figure 8.3 and 

Table 8.1.  

 

Figure 8.1 A Gap between Two Solid Wood Boards to Create the Simulated Known Crack 

Widths 

                  
(a) Daytime                                (b) Nighttime 

Figure 8.2 Two Lighting Conditions 

Figure 8.3 presents part of the controlled laboratory test results. It includes four subsets of 

figures. Each subset shows the 3D raw data on the left and the segmented crack map image 

produced using a dynamic optimization algorithm on the right. As shown in Figure 8.3, the 1mm 

cracks are partially captured, and the 2mm cracks are fully detected. Although Figure 8.3 shows 

only the results of 1mm and 2mm, the entire laboratory test results are shown in Table 8.1. As 

shown in Table 8.1, 2mm, 3mm, and 5mm cracks can be fully detected by the 3D laser. 
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Table 8.1 Scores for the Controlled Tests 

Score 
Crack width 

1mm 2mm 3mm 5mm 

Day-time 63.9 93.6 93.1 93.3 

Night-time 64.1 93.4 93.0 93.1 
 

                             
(a) 1mm (Daytime)                                  (b) 1mm (Nighttime) 

                            
           (c) 2mm (Daytime)                                (d) 2mm (Nighttime) 

Figure 8.3 Crack Segmentation Results on Simulated Cracks: the One on the Left is Raw 

3D Data, and the One on the Right is the Crack-Segmented Results (Tsai, 2010) 

Table 8.1 lists the quantitative scores derived from the linear buffered Hausdorff scoring method 

for the cracks of different widths under two lighting conditions. Cracks with widths of 1mm, as 

shown in Figure 8.3, are detected partially. The scores are approximately 64. For cracks with 

widths equal to or greater than 2mm, the scores are better, about 93. Daytime and nighttime tests 

result in similar scores. The maximum score difference is 0.2. The controlled laboratory test 

results, shown in Table 8.1, demonstrate that the 3D laser system is capable of detecting cracks 

whose widths are equal to or wider than 2mm.  
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Besides the controlled laboratory test conducted above, two field tests on actual roadways were 

also conducted. The first field tests evaluated the capability of the 3D laser system to detect 

cracks under low-intensity contrast conditions. The second field test evaluated the capability of 

the 3D laser system to detect cracks under different lighting conditions, including nighttime, 

daytime with shadow, and daytime without shadow.  

Figure 8.4 (a) shows a roadway image with low-intensity contrast between a crack 

(approximately 1mm to 6mm wide) and its pavement background. The low-intensity contrast 

makes the crack difficult to detect, even with the human eye, on an intensity-based digital image. 

However, the same image collected by 3D laser technology shows a more distinct contrast 

between the crack and the pavement background. This is illustrated by Figure 8.4 (b) and (d), 

collected during the day and at night, respectively, and Figure 8.4 (c) and (e), which represent the 

corresponding crack segmentation results. The high scores from this first test, 98.3 for daytime 

and 98.0 for nighttime, demonstrate the potential of 3D laser technology to detect cracks under 

low intensity contrast conditions.  

 
(a)                      (b)                         (c)                        (d)                       (e) 

Figure 8.4 Test Results on Crack with Low-Intensity Contrast: (a) Roadway Image; (b) 3D 

Laser Data Collected during the Daytime; (c) Drack Segmentation Result (Daytime; Score 

= 98.3); (d) 3D Laser Data Collected during the Nighttime; (e) Crack Segmentation Result 

(Nighttime; Score = 98.0) (Tsai, 2010) 
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The second field test was conducted on SR 80 to evaluate the consistency of using the 3D laser 

system to detect cracks under three different lighting conditions: nighttime, daytime with 

shadows, and daytime without shadows. Eleven test segments, including ten longitudinal cracks 

(cracks A to J) and a transverse crack (crack T), were labeled in the field. Examples of the three 

lighting conditions are shown in Figure 8.5. All eleven crack segments were analyzed using the 

dynamic optimization-based crack segmentation algorithm. Figure 8.6 shows the example of 3D 

raw data collected under three lighting conditions and the corresponding crack segmentation 

results for the crack J. Each sub-figure contains the 3D raw data on the left and the segmented 

crack on the right. Visual observation shows that the crack can be clearly captured by the 3D 

laser system and well segmented using the dynamic optimization-based method.  

Then, the detected cracks were compared with the ground truth using the linear buffered 

Hausdorff scoring method to obtain the score; the ground truth was established by observing the 

cracks in the field and digitizing them manually on the crack images. The scores for each 3D raw 

data image captured under three lighting conditions are listed in Table 5.2. As observed, the three 

scores for each crack are very close to each other. The score range was calculated for each crack 

and is shown in Table 5.2. The average score difference for those eleven cracks is 1.9. This 

difference is very small and may easily be caused by a tiny deviation, e.g. a 2-pixel deviation, 

from the actual crack pixels when digitizing the ground truth. Therefore, the preliminary results 

demonstrate that the proposed 3D laser system can perform consistently under different lighting 

conditions in the field.  

               
     (a) Nighttime          (b) Daytime with shadow    (c) Daytime no shadow 

Figure 8.5 Examples of Three Lighting Conditions 
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      (a) Nighttime    (b) Daytime with shadow         (c) Daytime no shadow 

Figure 8.6 3D Laser Data and Corresponding Crack Segmentation Results on the Crack J 

for Three Lighting Conditions 

Table 8.2 Scores for the Second Field Tests 

Crack 
Name 

Score 
Score 

Difference Night-time 
Day-time 

with Shadow 
Day-time no 

Shadow 
A 95.8 97.4 97.2 1.6 
B 95.5 96.1 95.4 0.7 
C 93.6 96.8 97.2 3.6 
D 95.0 97.2 96.9 2.2 
E 96.5 97.8 97.3 1.3 
F 96.5 98.0 97.5 1.5 
G 95.1 97.7 97.5 2.6 
H 95.4 96.6 97.6 2.2 
I 96.3 96.3 97.4 1.1 
J 95.6 97.6 97.7 2.1 
T 95.9 96.9 97.6 1.7 
 Average score difference 1.9 

 
In summary, both field tests demonstrated the feasibility of using the 3D laser technology to 

detect pavement cracks under different lighting and low-intensity contrast conditions. For three 

lighting conditions, the average quantitative score difference is less than 2%. 

3.2  Pavements with Oil Stains 

Oil stains usually appear to be darker than surrounding areas on a pavement surface. In 

traditional 2D digital images, crack pixels have similar characteristics. Therefore, it is difficult to 

differentiate pavement cracking from noise produced by such elements as oil stains. However, 
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when roadway data is captured by a 3D laser, oil stains are not a more distinctive feature in range 

data. 

This experimental test used pavement samples with oil stains and other noise to show the 

advantages of the 3D laser technique. The data used in this test were collected on SR 275 

between Milepost 0 and Milepost 1. There is an intersection and a gas station in this section of 

the roadway. Because the road has very little traffic, it is relatively good condition. Nevertheless, 

the pavement surface is usually not clean, so the roadway images are affected by noise caused by 

various road conditions. Figure 8.7 and Figure 8.8 demonstrate two representative samples in 

which noise from various conditions, such as oil stains, influence the pavement appearances. The 

intensity image, range, range image, and crack-detection results for these samples are presented 

in Figure 8.7. 

Figure 8.7 (a) shows the intensity image of the first pavement sample. From the image, we can 

see that there is a large oil stain near the bottom left corner and some small noise indications 

distributed over the image. These noise indications (including the oil stain) appear to be darker 

than the surrounding areas. On the other hand, the pavement cracking (which is on the left side 

of the sample) is hard to differentiate because of an image discoloration issue caused by the 

camera. Figure 8.7 (b) shows the range image of this sample based on the 3D laser data. The 

range image is generated from the elevation of the pavement surface. Noise indications, such as 

oil stains, have a darker intensity and do not have a distinctive elevation change on the surface. 

However, cracking can be clearly observed on range images, since a crack usually has a sharp 

elevation drop compared to the surrounding area. Based on this 3D range data, the crack 

detection was conducted, and the results are shown in Figure 8.7 (c). The crack detection 

algorithm gives good performance, even if the cracks are hard to observe on intensity pavement 

images. 
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(a)                                            (b)                                           (c) 
Figure 8.7 Pavement Images with Oil Stain: 

(a) Intensity image; (b) Range image; (c) Crack detection results 

       

(a)                                            (b)                                           (c) 

Figure 8.8 Pavement Images with Oil Stain and Other Noises: 
(a) Intensity Image; (b) Range Image; (c) Crack Detection Results 

 

Similarly, Figure 8.8 presents another sample of pavement with noise indications. Besides the oil 

stains in the middle of Figure 8.8 (a), there are also some long, dark strips caused by tire marks 

and camera discoloration. From Figure 8.8 (b) and (c), we can observe that these noise 

indications were effectively removed in the range image, and the crack detection results were 

good. It is also noticed from this experiment that besides pavement noise, such as oil stains, 

image discoloration caused by the camera lens and, even, pavement markings, can be removed or 

faded using the 3D laser data.  
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4. Evaluation of Automatic Crack Map Generation 

The 3D laser software platform provides a crack-detection algorithm based on 3D laser data. The 

corresponding crack map will be automatically generated as an output of the algorithm. This 

section will quantitatively evaluate the accuracy of the detected crack map compared to the 

ground truth. Since the performance of the 3D laser crack detection algorithm is related to the 

selection of parameters, data collection format, and characteristics of collected data, this section 

will not present a large-scale performance validation; instead, the framework of evaluating the 

performance of the 3D laser crack detection will be demonstrated so that future users of this 

system can optimize its performance on the unique data they collect. Also, representative result 

samples will be presented to reveal the potential issue of 3D laser data collection and crack 

detection.  

The following procedures were conducted to quantitatively evaluate the performance of the 3D 

laser crack-detection algorithm: 

- First, the ground truth was manually digitized and extracted from the 3D laser data. The 3D 

laser data was presented in the form of range image (Figure 8.9 (a)). Based on the visual 

inspection of range image, the cracking position was manually digitized and converted to a 

binary ground truth crack map.  

- Then, the crack map results were generated using the 3D laser crack-detection algorithm. 

The crack map was presented and overlaid on the intensity image or range image (Figure 8.9 

(b)), and different colors of the detected crack line represented different crack width ranges. 

There are two typical ways to convert it into binary crack map: 

o The first way is to manually digitize the intensity or range image with the crack map 

overlay (similar to establishing ground truth). 

o The second way is to interpret the XML file as the results of distress detection and 

reconstruct a binary crack map. 

The binary crack map is displayed in Figure 8.9 (c). 

- Finally, the two binary crack maps’ ground truth and detection results were compared 

quantitatively. The buffered Hausdorff scoring method was employed to conduct an 

objective evaluation.  
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(a)    (b)    (c) 

Figure 8.9 Crack Detection Procedure 

Figure 8.10 and Figure 8.11 use two samples to demonstrate the two potential constraints of 3D 

laser crack detection. Both figures contain two binary images; the left one is the manual ground 

truth crack map and the right one is the detected crack map.  

The first constraint of the 3D laser system is shown in Figure 8.10. The bottom part of the crack 

on the right was not successfully detected. This is mainly because that part mostly contains 

hairline cracks. Hairline cracks mean fine cracks with the widths around or under 1 mm. It can 

be observed that even in the ground truth crack map, the hairline cracks are discrete small parts 

instead of a continuous crack line, which means that it is difficult to differentiate by human eyes. 

Because the resolution of the 3D laser in the transverse direction is 1mm, it is difficult to detect 

hairline cracks. This is the first constraint of the 3D laser system.  

The second constraint is presented in Figure 8.11. There are a few false positives on the right of 

the sample. These are small pavement nicks caused by vehicle tires. This phenomenon would not 

be classified as cracks in most cases; however, since the nicks have elevation differences when 

compared to the surrounding areas, they can be observed even in the range image, and their 

characteristics are similar to cracks.  
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Figure 8.10 Ground Truth Image (Left) and Result Image (Right) for Sample 1 Collection 

on SR275 

    

Figure 8.11 Ground Truth Image (Left) and Result Image (Right) for Sample 2 Collected 

on SR275 

5. Evaluation of Crack Width Measurement 

Almost all the existing automatic crack evaluation studies focus on using 2D intensity-based 

digital pavement images as the input. Compared to the traditional 2D digital image technique, the 

emerging 3D laser technology can provide a more accurate width measurement and additional 
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crack depth information. Crack width is a common and important crack classification factor in 

most DOTs' pavement surface condition survey protocols, especially when differentiating 

severity levels. It is also crucial information for determining pavement maintenance operations, 

such as crack sealing/filling. However, crack width has rarely been used in the past crack 

classification studies. Considering the properties of 2D digital images, the accuracy of crack 

width measurement (measured pixel by pixel) is limited; even for high resolution images, crack 

width measurement is still influenced by other factors, such as lighting conditions and pavement 

noise (e.g. oil stain). . The 3D laser technology provides a better opportunity to measure crack 

width more accurately. 

In this experimental test, a total of 12 spots are selected from SR 275 Mile 1-2 for crack width 

measurement validation (as shown in Figure 8.12 (a) and (b)). The left image is the range image 

(based on elevation information of the pavement surface) with a detected crack map overlaid, 

and the automatically measured crack width information using 3D laser data is labeled beside the 

corresponding crack elements. The right image is the intensity image with the crack map 

overlaid, and the selected 12 locations are marked for reference. 

    

 (a) Eight Locations for Crack Width Measurement Validation 
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 (b) Another Four Locations for Crack Width Measurement Validation 

Figure 8.12 Twelve Locations Selected for Crack Width Measurement 

 

Figure 8.13 Field Crack Width Measurement for Establishing Ground Truth  

In order to validate the automatic crack width measurement accuracy for the 12 selected spots, 

the ground truth crack width in the field (as shown in Figure 8.13) was manually measured. The 

validation results are shown in Table 8.3. From the results, we can see that, based on the 3D laser 

pavement data, it is difficult to detect hairline cracks with a width of about 1 mm. This is 
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reasonable, considering the properties of the laser technique and, also, the resolution of the 3D 

laser system. Hairline cracks are also difficult to detect using traditional digital intensity image. 

Actually, based on GDOT pavement survey practices, hairline cracks, which usually occur in 

low-severity level load cracking, do not have significant influence on the deduct value 

computation; in other words, although hairline cracks are, also, a pavement distress issue, they 

do not have a large influence on the current pavement condition survey results. For the detected 

cracks, the automatically measured width information is relatively consistent with field-

measured ground truth. The maximum absolute difference is 1mm, and the average absolute 

difference is 0.4mm. The results show the capability of using the accurate crack width 

information for further crack classification tasks. 

 

Table 8.3 Crack Width Measurement Validation Results for 12 Locations 

Location 

No. 

Computed Crack 

Width (mm) 

Manually Measured 

Crack Width (mm) 

Absolute Difference 

(mm) 

1 3.5 3.5 0 

2 2.8 3.0 0.2 

3 4 3.5 0.5 

4 Not detected 1.5 N/A 

5 Not detected 1 N/A 

6 3.8 3 0.8 

7 Not detected 1 N/A 

8 3.1 3 0.1 

9 4.8 4 0.8 

10 2.9 3 0.1 

11 Not detected 1 N/A 

12 4 5 1 

Avg. 

(detected) 
3.6 3.5 0.4 
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The above validation results show good accuracy for measuring longitudinal crack width. To 

further assess the measurement accuracy for transverse crack, 12 spots on three transverse cracks 

on SR 275 were selected. The manually measured crack width, which is considered as ground 

truth, varies from 1 mm to 7 mm. Figure 8.14 shows an example for transverse crack spot AT1. 

Roughly, the manually measured crack width for AT1 is 1 mm as shown in Figure 8.14 (b) while 

the 3D-line-laser-measured result is around 5 mm as shown in Figure 8.14 (c). Table 8.4 lists the 

comparison results for all 12 spots. It can be seen that all three transverse cracks can be detected 

by using 3D laser, but the crack width measurement is very inaccurate for fine cracks, e.g., AT1 

and AT2. This type of inaccuracy is caused by the coarser resolution of 3D laser data in the 

driving direction, which is about 5mm.  

   

Figure 8.14 Measurement of Transverse Crack Width 

6. Summary 

The validation study in this chapter shows that the 3D laser is insensitive to different lighting 

conditions, low intensity contrast, and pavement oil marks, unlike the traditional line scan 

camera. Laboratory tests on fabricated crack samples show consistent detection results in 

daytime and nighttime. Cracks with widths greater than 1mm can be detected easily. However, a 

hairline crack with a width of approximately 1mm is hard to detect due to the current resolution 

of the integrated 3D laser. Field tests on Georgia SR 80 were conducted under three different 

lighting conditions, daytime with shadow, daytime without shadow, and night. The crack 

detection results show very good consistency and the average difference of performance scores is 

less than 2% (out of 100). Though low intensity contrast is a challenge for the traditional line 

(a) (b) (c) 
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scan camera for crack detection, the test result shows no difficulty for the integrated 3D laser as 

long as the crack is distinct on surface depth change. Similarly, oil stains can be effectively 

removed from a possible false detected crack because of indistinguishable depth change.  

 Table 8.4 Crack Width Measurement Validation Results for Transverse Crack 

Location 

No. 

Computed Crack 

Width (mm) 

Manually Measured 

Crack Width (mm) 

Absolute Difference 

(mm) 

AT1 5.1 1 4.1 

BT1 6.2 2 4.2 

CT1 5.4 3 2.4 

DT1 5.1 4 1.1 

T1 4.8 3 1.8 

T2 4.8 3 1.8 

T3 5.5 3 2.5 

T4 5.1 3 2.1 

T5 5.5 3-4 1.5-2.5 

T6 5.3 6 0.8 

T7 4.9 7 2.1 

T8 5.4 6 0.6 

 

To validate the crack width measurement accuracy, 12 spots were selected on SR 275 with 

manually measured crack width as the ground truth. Cracks with widths greater than 2mm can be 

detected correctly. However, cracks equal to and less than 1 mm cannot be detected correctly. 

Compared to the manually measured results, crack widths were captured well by the automatic 

method. The maximum absolute difference of crack width was 1 mm, and the average absolute 

difference was 0.4 mm. This result shows a promising potential to measure crack width for 

further crack classification tasks. While the 3D-line-laser-provided software can effectively 

detect the longitudinal crack widths, the transverse crack width cannot be reliably detected 

because the current data resolution in the driving direction is about 5 mm.  This issue can be 

solved by improving the resolution of 3D laser system, especially at longitudinal direction.  
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Actually, it has been claimed that 1 mm resolution at both transverse and longitudinal direction 

can be acquired at highway speed using the newest 3D laser system (Li, et al., 2014). 
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Chapter 9 Feasibility Study of Crack Deterioration Behavior Using 

3D Laser Data 

Cracking is one of the predominant types of pavement distresses, mainly caused by repetitive 

vehicle loads and weathering.  Pavement crack characteristics, including location (in the wheel 

path or the non-wheel path), orientation (transverse or longitudinal), length, width, density,  

pattern, and crack deterioration behavior (e.g. crack growth in length and width) are essential for 

determining an  adequate treatment method, timing, and the corresponding quantity of materials, 

such as  crack filling/sealing materials .  It is also crucial to study the detailed pavement cracking 

deterioration behavior with respect to length, width, density, branch pattern, and/or growth rate 

to validate the Mechanistic-Empirical Pavement Design Guide (MEPDG).   

Although a tremendous amount of effort has been made in labs to simulate the actual pavement 

crack deterioration behavior, it is still difficult to use lab tests to fully determine the actual 

pavement crack deterioration behavior due to complicated roadway conditions and traffic loads 

in the real-world environment.  Therefore, to obtain detailed in-field pavement cracking data, it 

is still essential to study crack characteristics and deterioration behavior, which are indispensable 

for validating/calibrating the MEPDG, forecasting pavement performance, and determining 

treatment method and timing.  However, it is very challenging to accurately and reliably collect 

detailed pavement crack data in field using either visual inspection or videolog-based method.  

Visual inspection requires tremendous effort to measure cracks in field, which is not even 

feasible on high-traffic-volume interstate highways.  The accuracy is also hard to maintain by 

using visual inspection.  Videolog-based methods require manual crack identification or 

automatic crack detection.  Due to the impact of lighting conditions and the complicated 

pavement surface textures, the crack detection using videolog images is still a challenge. 

The advancement of 3D laser technology provides a great opportunity to use 3D laser data to 

automatically collect detailed crack data in the field. In addition, the 3D laser technology has 

been proven to be robust in crack detection; it enables the extraction of detailed crack 

characteristics, including location, orientation, length, and width, which makes it feasible to 

study the pavement characteristics and crack deterioration behavior in the real-world 

environment, and it provides valuable information for determining cost-effective pavement crack 
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treatments.  Though the data resolution at longitudinal direction is 5 mm using our current 3D 

laser system, which makes it difficult to accurately detect and measure fine, transverse cracks, 

this issue can be solved by improving the resolution of 3D laser system, especially at 

longitudinal direction.  Actually, it has been claimed that 1 mm resolution at both transverse and 

longitudinal direction can be acquired at highway speed using the newest 3D laser system 

 Detailed crack characteristics, including location, orientation, length, width, density, and pattern, 

derived from 3D laser data, could be used to support a) fundamental study of pavement 

mechanics and deterioration behavior, b) validation of current pavement design methods and 

development of new design concepts and methods, c) determination of adequate treatment 

methods and timing, d) development of accurate and reliable pavement deterioration models, and 

e) development of cost-effective pavement maintenance programming, such as intelligent crack 

sealing planning.   

This study focuses on evaluating the feasibility of using the detailed crack data derived from 

field-collected 3D laser data and will support the study of multi-scale crack deterioration 

behavior, such as an individual crack or pavement sections of different lengths (e.g. 100 feet, 0.1 

mile, 1 mile, etc.); it will, also, identify the vulnerable and/or robust pavement sections/spots 

with high and/or low deterioration rates.  Development of a method/tool to identify these 

sections/spots of interest is important for a) development of resilient and sustainable 

infrastructure system (to study why infrastructures behave differently), and b) application of 

localized treatments to isolated spots to save precious pavement maintenance and rehabilitation 

money.  Ultimately, it should be able to be used to support the development of a long-term 

performance forecasting model in the future. 

1. Research Objectives 

The following are the objectives of the study presented in this chapter:  

1) to identify the potential issues related to the crack deterioration study using long-term 

monitoring data derived from 3D laser data  
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2) to study the variability, caused by 3D data acquisition and automatic crack detection 

method so the changes resulting from crack growth instead of data variability can be 

better quantified 

3) to discuss the potential utilization of the long-term monitoring data 

Based on above objectives, field tests were conducted to collect the 3D laser data at different 

sites and at different times to study crack growth and deterioration. 

2. Analysis of Crack Growth 

This section presents an analysis of crack growth using long-term monitoring data.  The long-

term monitoring data was collected using 3D laser technology at different times.  To study crack 

deterioration behavior, it is a logical, first step to explore the feasibility of using crack data 

collected at different times using multi-scales, such as an individual crack or pavement sections 

of different lengths (e.g. 100 feet, 0.1 mile, 1 mile, etc.); this will identify the vulnerable and/or 

robust sections/spots based on their high and/or low deterioration rates. 

A series of field experimental tests were conducted at different times to collect 3D laser data on a 

one-mile asphalt pavement section located on Pooler Parkway in Pooler, Georgia, as shown in 

Figure 9.1.  The test site is on a one-mile asphalt pavement section with a total of 4 lanes (two 

lanes in each direction). The data were collected on the outside lanes in both directions.  Pooler 

Parkway has a moderate traffic volume, shown in Table 9.1.  The AADT has remained around 

18,000, although there is a slight variation over the past seven years.   

The 3D data was collected seven times, as shown in Table 9.2, from the outside lanes of both 

direction since July 2011, using the GTSV.  Table 9.2 shows the sensor angle configurations and 

the corresponding resolutions in longitudinal and transverse directions at seven time stamps.   
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Figure 9.1 Test Site on Pooler Parkway, Pooler near Savannah, Georgia 

Table 9.1 Pooler Parkway Traffic Volume 

Year AADT 

2007 17530 

2008 17440 

2009 17090 

2010 19190 

2011 18730 

2012 18410 

Table 9.2 General Information of Data Collection  

Date and Time Configuration Transverse Resolution Longitudinal Resolution 
07/29/2011 4pm -15 degrees 1 mm 5 mm 
09/29/2011 3pm -15 degrees 1 mm 5 mm 
10/21/2011 11am -15 degrees 1 mm 5 mm 
12/08/2011 1pm -15 degrees 1 mm 5 mm 
03/21/2012 12am 15 degrees 1 mm 5 mm 
03/20/2013 4pm 15 degrees 1 mm 5 mm 
12/07/2013 9am 15 degrees 1 mm 5 mm 
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Two experimental studies were conducted to explore the feasibility of studying crack 

deterioration behavior using 3D laser data and identify the potential issues that are useful for 

transportation agencies and vendors in their data collection.  One study explored the growth of 

individual cracks over time; another study explored the clustered crack deterioration behavior of 

a 0.1 mile roadway section.  

2.1 Individual Crack Analysis 

This sub-section presents the data processing and analyses of the 3D laser data and crack data 

collected and extracted from different times in the long-term monitoring program to explore the 

behavior of individual crack growth and the corresponding issues. This will be crucial when 3D 

laser data is used to analyze individual crack propagation in the future. 

2.1.1 Data Processing 

Figure 9.2 shows a roadway image collected on 07/29/2011 with a labeled crack, C1, on the 

pavement.  The detected crack has an offset to the original one for the purpose of visibility.  3D 

laser data have been collected seven times, as shown in Table 9.2, to analyze the crack growth in 

these individual cracks.  The following steps were applied: 

 Step 1: The 3D laser data, collected at 7 times, were analyzed using the same crack 

detection algorithms for the purpose of being consistent.  

 Step 2: The extracted crack pieces were statistically analyzed. Each crack piece contains 

the properties of length, width, orientation (transverse/longitudinal), location (wheel path 

or non-wheel path), depth, etc.  Instead of precisely registering the individual cracks 

extracted at two different times to analyze the crack growth topologically, this study 

analyzed each individual crack by clustering the crack pieces for each labeled crack and 

analyzed  them statistically in terms of the crack width, length, orientation, etc.    

 Step 3: Compared the change of each individual crack in terms of its property at different 

times.    

 Step 4: The deterioration rate was then computed in terms of the growth of length, width, 

density, etc.   

 Step 5: The deterioration (e.g. crack length growth) for different individual cracks were  

then compared to understand the typical crack length and width growth per year, length 
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and width growth at different times of the pavement life, and the crack deterioration rates 

among the different cracks.   

 

Figure 9.2 Labeled Crack 

2.1.2 Data Analysis 

The crack width measured using 3D laser data is more accurate for longitudinal cracks than for 

transverse cracks because the data resolution in the transverse direction (1 mm) is higher than the 

longitudinal direction (5 mm).  Therefore, two longitudinal cracks were selected for evaluation 

of their crack growth.  Figure 9.3 shows the locations of the cracks (C1 and C2) monitored on 

Pooler Parkway. These extracted cracks (C1 and C2) were collected at different times and are 

shown in Figure 9.4.  Table 9.3 lists the crack lengths and the corresponding crack widths 

(weighted average width, standard deviation, and median value) at different times.  

 

Figure 9.3 Locations of Labeled Cracks 

Labeled 
Cracks
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Figure 9.4 Crack Maps of Cracks C1 and C2 at Different Times  

Table 9.3 Crack Length and Width of Cracks C1 and C2 at Different Times   

Date 

C1 C2 

Length 
(m) 

Width (mm) 
Length 

(m) 

Width (mm) 

Average
Std. 
Dev.

Median Average 
Std. 
Dev. 

Median

07/29/2011 3.69 4.8 1.4 4.6 0.35 5.5 1.7 5.8 
09/29/2011 3.95 5.1 1.7 4.9 0.39 5.1 1.2 4.7 
10/21/2011 4.35 4.6 1.4 4.4 0.38 5.0 1.7 4.6 
12/08/2011 4.98 4.7 1.7 4.5 0.51 4.6 1.7 4.2 
03/21/2012 4.42 4.9 1.6 4.8 1.27 4.3 1.6 3.8 
03/20/2013 5.61 4.4 1.5 4.2 0.97 4.2 1.5 3.6 
12/07/2013 5.26 5.3 1.8 5.1 1.05 4.2 1.4 3.9 

 

As shown in Figure 9.4, the two selected cracks vary over time; the total length has increased, 

except for certain times when the crack detection algorithm did not successfully capture all the 

fine parts of the crack because of the following: 

 The detection of fine cracks is still a challenge due to the limited data resolution (1 mm in 

the transverse direction and 5 mm in the longitudinal direction).  The detected fine cracks 

might change from time to time when sensor configuration has minor changes or the data 

collection vehicle wanders.  The changed fine part of a detected crack contributes most of 

crack length variation.  

T1 T2 T3 T4 T5 T6 T7 T1 T2 T3 T4 T5 T6 T7 
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 Falsely detected cracks are another reason for crack length variation.  For example, there 

are several small branches detected for C1 at T2, T4, and T6 as shown in Figure 9.4.  

These falsely detected cracks could be caused by data noise or the algorithms used. 

 The length variation could also be caused by fines that fill the cracks, leading to the 

inaccurate detection of cracks.  Cracks filled with fines will show less contrast on 3D 

laser data, which is a disadvantage to automatic crack detection. 

To better evaluate the propagation of the selected cracks, the whole lengths of the selected cracks 

have been extracted and presented in Figure 9.5; the average widths and median widths of the 

selected cracks are presented in Figure 9.6. We can see that the lengths of these two cracks are 

increasing at different speeds. Slight variations can be observed from time to time, which can be 

mostly attributed to the variation of the crack detection results.  On the other hand, the crack 

width does not show a clear increasing trend; instead, the average width varies significantly.  

Since median crack width is more robust to outliers than the average one, it was drawn in Figure 

9.6 side by side with the average values (which are also listed in Table 9.3).  It can be seen that 

the trends of the average values and median values are similar for these two cracks.  For C1, the 

difference between the average width and the median value is about 0.2 mm; the difference is 

fairly stable over time.  Thus, the two lines (the blue solid and dotted lines) in Figure 9.6 are 

almost parallel.   The difference for C2 is between 0.3 mm and 0.6 mm with slight variation (red 

solid and dotted lines) as shown in Figure 9.6.  These comparison might indicate that there is no 

apparent outlier in width measurements for these two cracks; either average value or median 

value can be used as a measure for the overall crack width.  However, since crack length changes 

over time and a new crack might be tight at its early stage, it will lower the average crack width 

of the entire crack over time, which is hard to be used for modeling pavement deterioration.  An 

ideal way is to select a crack with a fixed length and location; then, its average width being 

changed over time could be used to observe its deterioration, which requires a good registration 

(i.e. alignment) of the same crack over time.  In addition, temperature is another important factor 

that could affect the change of crack width.  For thermal cracks, they often close and open when 

temperature increases and decreases, which are caused by the expansion and contraction of 

asphalt concrete, respectively.  Though C1 and C2 are more likely longitudinal, loading-induced 

cracks, their crack widths might also be affected by the change of temperature.  It is suggested in 
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the future to measure a crack width at different times and different temperatures to more 

accurately assess the impact of temperature change. 

 

Figure 9.5 Trend of Total Length of Selected Cracks 

Since a crack normally has no uniform crack width during the automatic crack detection, it is 

divided into smaller segments, each of which has the same crack width.  Thus, a histogram of 

crack distribution can better describe a crack than the average crack width.  Figure 9.7 shows the 

crack distributions of Cracks 1 and 2 over time.  In general, when crack length increases over 

time, the length of the crack with the smaller crack width also increases.  For C2 because the 

total length increased from 0.35 m to 1.05 m (see Table 9.3), the histogram changes more 

significantly than the one for C1 (the total length increased from 4.8 m to 5.3 m).  It should be 

noted that, for C2 at T4 and T5, there is a small portion of cracks with width between 8 mm and 

9 mm.  However, at T6 and T7, the total length between 8 mm and 9 mm decrease.  This 

phenomena might be caused by temperature.  However, in considering the small total length 

(only about 40 mm) and the available data resolution (greater than 1 mm), it can be considered as 

normal measurement variation. 
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Figure 9.6  Trend of Average Width and Median Width of Selected Cracks 
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Figure 9.7  Crack Width Distributions of Selected Cracks 

2.2 Clustered Crack Analysis 

The study of individual crack growth is useful for revealing the behavior of crack propagation in 

length and width.  This section will consider a section of pavement as a whole and analyze the 

overall growth of the clustered cracks, which can be used to study the pavement performance 

related to pavement structure, traffic load, and environment.   

2.2.1 Data Processing 

To consider the variation of pavement structure and pavement conditions, the 1-mile test section 

on Pooler Parkway was divided into 10 subsections, each of which was 0.1 mile long.  Then, 

statistical analyses were performed on each subsection to study the growth of the clustered 

cracks in terms of length and length-weighted average width.  The following steps were applied: 

 Step 1: For consistency, the 3D laser data, collected at 7 different times were analyzed 

using the same crack detection algorithms.  

 Step 2: The 1-mile test section was divided into 10 subsections, each of which was 0.1 

mile.  The total crack length was calculated for each subsection at each timestamp.  Then, 

a linear regression was performed for each subsection to determine the crack's increasing 
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rate in length.  Different crack increase rates in different subsections might indicate 

different structural conditions, which can be used for engineering investigation. 

 Step 3: To study the crack width growth, a length-weighted average width was used to 

study the crack's change over time.  The Length-Weighted Average Width can be defined 

as 

_
∑
∑

 

where  is the length of  crack  in a subsection  and  is the width of crack  in the 

subsection.  To trace the crack width growth of a specific group of cracks, e.g. the initial 

cracks, the new cracks should be excluded.  An ideal method is to register the detected 

cracks at different times, then choose only the cracks that align with the initial ones.  

However, doing this is still a challenge.   We used a simplified method based on the crack 

width histogram and disregarded the cracks that were tight.  Then, the length-weighted 

average width was computed for each subsection at each times.   Linear regression was 

performed to determine the crack width increase rate. 

2.2.2 Data Analysis 

 Crack Length in Clustered Sections 

We computed the total crack length for each 0.1-mile subsection and evaluated the crack growth 

quantitatively by examining the propagation rate of the total crack length in each subsection at 

different times.  Figure 9.8 shows the overall trend of the total crack length in each 0.1-mile 

subsection for the outside lanes in both directions of Pooler Parkway.  In general, the total crack 

length in each subsection shows an increasing trend in the quantity of cracks.  However, some 

variations can be observed, which could have been caused by the GSTV’s wandering during data 

collection.    The quantity of the cracks in the westbound lane is apparently greater than in the 

eastbound lane.  The total crack length in the eastbound subsections ranged from 10 m to 74 m at 

the beginning of the study and has developed to be between 20 m to 150 m;  the westbound 

subsections developed from between 80 m and 230 m to be between 100 m and 270 m.  In Figure 

9.8, different colors of the trend lines are used to indicate the magnitude of the propagation or 

increasing rates: green lines show increasing rates less than 0.02 m/day (7.3 m/year); red lines 
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show increasing rates greater than 0.04 m/day (14.6 m/year); and blue lines show increasing rates 

in between. 

 

Figure 9.8 Eastbound and Westbound Subsections Total Crack Length Trends 

The propagation rate for the total crack length for each subsection was obtained through linear 

regression of total crack length against time, which can be represented as follows: 

	 	  

where  represents time and  indicates the crack length propagation rate. 

Univariate linear regression was conducted between total crack length of all timestamps for 

each subsection and time.  The detailed results are listed in Table 9.4 and  

 

 

Table 9.5. 

Table 9.4 Eastbound Subsections Total Crack Length Regression 

Section No Total Length (m) 
Increasing rate ( ) (m/day / 

(m/year)) 
R2 

1 53-83 0.04 (14.6) 0.856 
2 46-89 0.05 (18.3) 0.856 
3 38-62 0.02 (7.3) 0.691 
4 32-64 0.03 (11.0) 0.888 
5 7-34 0.03 (11.0) 0.829 
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6 49-154 0.12 (43.8) 0.914 
7 74-105 0.03 (11.0) 0.510 
8 10-46 0.03 (11.0) 0.454 
9 40-71 0.03 (11.0) 0.426 

10 11-62 0.06 (21.9) 0.881 

 

 

 

Table 9.5 Westbound Subsections Total Crack Length Regression 

Section No Total Length (m) 
Increasing rate ( ) (m/day 

(m/year)) 
R2 

1 104-122 0.01 (3.7) 0.097 
2 76-109 0.03 (11.0) 0.761 
3 230-278 0.05 (18.3) 0.757 
4 227-254 0.0 (0.0) 0.002 
5 117-135 0.0 (0.0) 0.002 
6 118-142 0.02 (7.3) 0.669 
7 113-133 0.01 (3.7) 0.233 
8 194-197 0.02 (7.3) 0.315 
9 233-262 0.03 (11.0) 0.841 

10 193-230 0.03 (11.0) 0.521 
 

The regression results of the eastbound subsections are better than the ones of the westbound 

subsections.  The goodness of fit (R2) of eastbound subsections is at least 0.42.  However, 

Subsections 7 to 9 in the eastbound test section have fairly low R2 values, which could be caused 

by the variations at the earlier timestamps.  The length of the cracks for all the eastbound 

subsections increases by the rate of 0.02-0.06 m/day (7.3-21.9 m/year), except for the sixth 

subsection, which increases by 0.12 m/day (43.8 m/year).  Visual inspection reveals that a 

significant amount of load cracking has developed since the pavement performance monitoring. 

The westbound subsections have a higher quantity of cracks; however, the cracks' increase rates 

are slightly lower than those of the eastbound subsections. The westbound crack increase rates 

ranges from 0 to 0.05 m/day (0 to 18.3 m/year). With larger condition variations, some 

regressions of the westbound subsections are of poor quality with R-Square as low as 0.002.  

In general, the total crack length of the test site on Pooler Parkway is increasing with 

considerable variations. Such variations could be caused by non-uniform pavement structural 
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quality or by the data variations. As a result, further studies are needed to analyze the true causes 

of such variations.   

 

 Crack Width in Clustered Sections 

Similar to the total crack length, we evaluated the length-weighted average crack width by taking 

all the cracks into consideration. However, the average width generally shows little increments, 

which could be because new cracks generate over time and these new cracks are tight in width at 

their early stages.  As a result, the length-weighted average crack width by taking all the cracks, 

including the old cracks and new cracks, cannot be used to reveal the real trend of crack width 

growth over time.  To study the propagation rate of the crack width of old cracks, we assumed 

that new cracks fall into the tightest crack categories. This assumption can be further illustrated 

in Figure 9.9.  The red bars represent new cracks, and the blue bars represent old cracks. 

 

Figure 9.9 Assumption of Average Crack Width Analysis 

Based on this assumption, we can evaluate the propagation rate of crack width by first 

disregarding these new cracks from the data at each timestamp. Then, we conduct linear 

regression based on the cracks that have been adjusted. The entire process can be described as 

follows: 

 Step 1: Define quantity of cracks in each subsection for initial timestamp  as ; 
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 Step 2: For each timestamp , remove the tightest cracks by a total length of  in 

each subsection;  

 Step 3: Conduct linear regressions based on the average width of the remaining cracks 

(i.e. old cracks) for each subsection. 

Following these three steps, we have evaluated the 20 0.1-mile subsections on Pooler Parkway 

and the results are presented in Figure 9.10 and Figure 9.11.  As shown in Figure 9.10, most 

subsections (subsections 1 to 6, and 10) in the eastbound test section show an average increasing 

rate of crack width around 0.0015 mm/day (0.55 mm/year) (two subsections show an increasing 

rate slightly lower than 0.0015 mm/day (0.55 mm/year), and four subsections show a higher 

increase  rate), indicating that the average width of the cracks increases more than 0.5 mm per 

year in the eastbound test section under the current moderate traffic volume and weathering.  The 

eastbound test section also contains three subsections (section 7, 8, and 9) that show unclear 

trends with large variations, as shown in the right figure in Figure 9.10.  Careful examination 

showed that such variation could be attributed to the absence of pavement markings in the 

collected 3D laser data, which caused a significant number of false positives during automatic 

crack detection.  Besides the false positive cracks, the classification of regions of lanes also 

failed because of the lack of lane markings, which further contributed to the variation of the 

trends by including extra cracks lying on the edges of the lane.   

 

Figure 9.10 Eastbound Subsections Average Crack Width Trend 
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The detailed regression results are listed in Table 9.6.  Accordingly, the data of the three 

subsections (7, 8, and 9) in red are problematic because of the lack of pavement markings.  

Regressions will not produce meaningful results and, thus, are omitted. The R2 values of all valid 

regressions are above 0.6, indicating a strong linear correlation.  

The length-weighted average width of all ten subsections in the westbound direction shows 

overall good trends with minor variations (Figure 9.11). Two out of the ten subsections have a 

propagation rate greater than 0.0025mm/day (0.91 mm/year), and three are below 0.0015mm/day 

(0.55 mm/year), leaving half the number of subsections in between.   

Table 9.7 lists the detailed regression results.  The R2 values of most regressions are above 0.7, 

indicating good correlations. Sections 1 and 2 have the highest propagation rate in terms of 

average width, while sections 4, 6, and 7 have the lowest propagation rates.  Looking further into 

the causes to the different propagation rates among these subsections (Sections 4, 6, and 7 at 

specific times) is recommended.   

Table 9.6 Eastbound Average Crack Width Increasing Ratio Regression 
Section No Increasing ratio (mm/day (mm/year)) R2 

1 0.0018 (0.66) 0.886 
2 0.0018 (0.66) 0.955 
3 0.0013 (0.47) 0.852 
4 0.0014 (0.51) 0.778 
5 0.0018 (0.66) 0.636 
6 0.0031 (1.13) 0.712 
7 -- -- 
8 -- -- 
9 -- -- 

10 0.0019 (0.69) 0.740 
Note: -- indicates problematic data set 
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Figure 9.11 Westbound Subsections Average Crack Width Trend 

Table 9.7 Westbound Average Crack Width Increasing Ratio Regression 

Section No Increasing ratio (mm/day (mm/year)) R2 
1 0.0031 (1.13) 0.972 
2 0.0026 (0.95) 0.960 
3 0.0018 (0.66) 0.959 
4 0.0012 (0.44) 0.818 
5 0.0018 (0.66) 0.730 
6 0.0011 (0.40) 0.912 
7 0.0009 (0.33) 0.476 
8 0.0019 (0.69) 0.933 
9 0.0022 (0.80) 0.994 

10 0.0015 (0.55) 0.949 

3. Issues of Long-term Monitoring Data 

This section identifies the issues of using long-term monitoring data to study the crack 

deterioration behavior, which might be the source of data variation.   

It is important to collect data at the same sampling area/region at different timestamps so they 

can be compared consistently to evaluate the crack growth.  In addition, the temperatures when 

data is collected should also be comparable, thus, the growth of crack width can be consistently 

evaluated.  The following are the factors that could lead to inconsistent sampling area/region at 

different timestamps:  
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 Vehicle lateral wandering 

It is difficult to collect the data along the same path at different times because vehicle wandering 

always happens.  The sensor coverage at different times could vary with a lateral displacement of 

a sensing vehicle.  A vehicle's lateral wandering would not be an issue when the entire lane is 

covered, including both left and right pavement markings, because a consistent sampling 

area/region can be identified with the left and right pavement markings. Although the sensors are 

able to cover an area slightly wider than an entire pavement width (e.g. 4 meters), a vehicle's 

wandering that is large due to  changing lanes, avoiding obstructions, etc. could lead to 

inconsistent sampling area/region because the left and right pavement markings are not included.  

Below are some examples. 

 
                               (a) Collected in 2014                         (b) Collected in 2013 

Figure 9.12 Inconsistent Sampling Area/Region Caused by Vehicle Wandering 

The sampling areas/regions in Figure 9.12 are different. Thus, the computations of crack growth 

by comparing these two images are incorrect.  

 Inconsistent pavement marking detection or eroded pavement marking 

The left and right pavement markings are often used to identify and define a consistent sampling 

area/region in lateral/transverse directions.  If the detection of pavement marking is incorrect at 

different timestamps, the sampling area/region could be defined incorrectly.  Figure 9.13 shows 

an example. 
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                  (a) Collected in 2014                                                  (b) Collected in 2013 

Figure 9.13 Inconsistent Sampling Area/Region Caused by Incorrect Pavement Marking 

Detection 

 Lack of consistent longitudinal references 

Longitudinal reference is crucial for establishing a consistent sampling area/region.  The possible 

longitudinal reference candidates are the milepost markers (one mile sample) or other manual 

pavement markers.  It is typically more challenging when the sample area or region is small (say 

5 meters) because there could be a longitudinal shift in data collection.  Figure 9.14 shows an 

example in which a longitudinal shift happened in two consecutive data collections; 

consequently, the cracks in these two images cannot be registered and directly compared. 

 
                  (a) Collected in 2014                                                  (b) Collected in 2013 

Figure 9.14 Inconsistent Sampling Area/Region Caused by Shift of Data Collection in 

Longitudinal Direction 
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Other than the inconsistent sampling area/region, the accuracy of crack detection and crack width 

measurement is another source of data variation.  Due to the limitation of 3D laser data 

resolution (the transverse resolution is 1 mm and the longitudinal resolution is 5 mm), fine cracks 

with crack widths less than 2 mm cannot be completely detected.  As for crack width, the 

theoretical accuracy for a longitudinal crack is 1 mm; it is 5 mm for a transverse crack.  Thus, it 

is still difficult to measure the width of a fine crack.  However, with the advancement of sensing 

technology, it is believed that the data resolution can be further improved.   

4. Summary 

The chapter presents a feasibility study of asphalt pavement crack deterioration behavior using 

long-term monitoring 3D laser data that has been collected since 2011 on a one-mile test site on 

Pooler Parkway near Savannah, Georgia.  Two types of studies were performed.  The first 

studied the crack growth in length and width for two selected individual cracks; the second 

studied the crack growth of clustered cracks in 0.1-mile subsections.  These two studies 

demonstrated the use of long-term monitoring 3D laser data to explore the detailed crack 

deterioration behavior at the levels of individual cracks and clustered cracks, which can be used 

to support a) fundamental study of pavement mechanics and deterioration behavior, b) validation 

of current pavement design methods and development of new design concepts and methods, c) 

determination of adequate treatment methods and timing, d) development of accurate and 

reliable pavement deterioration models, and e) development of cost-effective pavement 

maintenance programming, for example an intelligent crack sealing planning.   

3D laser technology is still an emerging technology that is being applied to support highway 

agencies’ research and engineering practice.  Before it can be fully implemented in agencies’ 

various applications, sufficient calibration/validation is invaluable and indispensable.  The study 

presented in this chapter fulfills this purpose.  Other than the feasibility study of crack 

deterioration behavior, the potential issues were also discussed and uncovered, which are useful 

for researchers and industries for further improving the technology.  The following are suggested 

for future study:  

 Data collection vehicle lateral wandering causes the variation of data sampling 

area/region.  To mitigate the impact of this issue, more robust algorithms are needed for 
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pavement marking detection, even in the case when a pavement marking is missed, and 

crack detection.  Furthermore, a mechanism is needed to facilitate a vehicle driver's 

ability to conveniently maintain the vehicle in the middle of a lane while sensing data is 

being collected. 

 The evaluation of crack width increasing rate was based an assumption that new cracks 

fall into the category of the tightest cracks without further checking whether the excluded 

cracks were actually new cracks or not.  This assumption could create some data 

variation because the tight, old cracks could, also, be excluded.  Thus, developing a crack 

registration method to spatially align cracks that are collected at different timestamps is 

recommended; then, the behavior of crack width changing can be studied for spatially 

registered individual cracks or clustered cracks. 

 The current 3D laser technology is capable of collecting project-level and network-level 

pavement distress data for purpose of pavement management and maintenance.  

However, studying detailed pavement crack deterioration behavior requires higher 

resolution of 3D laser data to detect finer cracks.  The 3D laser system used in this study 

has a resolution of 5 mm at longitudinal direction, which limits the capability to detect 

and measure the width of fine transverse cracks.  Thus, there is still a need to enhance the 

resolution of 3D laser system.  Fortunately, some manufacturers started to develop the 

new 3D laser system with 1 mm resolutions. 

 In current study, length-weighted average and median (50th percentile) crack widths are 

used to analyze the crack-width-related crack propagation.  To provide more informative 

statistics that can be more relevant to pavement maintenance, rehabilitation, and 

reconstruction (MR&R), other factors, e.g. 75th, 90th, or 95th percentiles, can be used to 

represent the overall crack width.  Further discussion with pavement engineers and 

experts will be needed.  
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Chapter 10 Conclusions and Recommendations 

Thanks to the support of USDOT and GDOT, this research project scientifically and 

comprehensively validated the use of CRS&SI technologies to improve the inventory, condition 

assessment, and management of traffic sign and pavement asset. Using the sensing data, 

including the 3D laser data, video log images, and mobile LiDAR, collected by the GTSV, the 

scientific validation approaches include 1) laboratory tests in a well-controlled environment; 2) 

field tests on carefully selected test road sections; 3) acquisition of data from other transportation 

agencies; 4) development of algorithms and applications; 5) statistical analysis; and 6) extensive 

discussion with TAC members and other participating transportation agencies. The following list 

the major conclusions and recommendations. 

1. Conclusions 

The following conclusions are categorized based on the research focuses for sign asset and 

pavement asset. 

 Sign Asset - Develop and validate an enhanced sign inventory procedure using image-

processing-based method and mobile LiDAR 

To improve the efficiency of traffic sign data collection, the automatic traffic sign detection 

and recognition algorithms using video log images and mobile LiDAR were tested using real 

data acquired from different transportation agencies and the GTSV. The results demonstrate 

the potential for applying these automatic algorithms for establishing a cost effective sign 

inventory method.  

For the automatic traffic sign detection algorithm using video log images provided by 

LaDOTD and the city of Nashville, more than 75% of the traffic signs were correctly 

detected. For the automatic traffic sign recognition algorithm using video log images 

collected by the GTSV, 81% of the stop signs and 96% of the speed limit signs were 

correctly recognized. For the automatic traffic sign detection algorithm using mobile LiDAR, 

more than 94% of the traffic signs were correctly detected based on 17.5 miles of the LiDAR 

data collected by the GTSV on I-95 near Savannah, Georgia. The LiDAR technology is very 

promising for sign data collection. 
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While the current algorithms cannot achieve a satisfactory detection and recognition 

accuracy for a fully automatic data collection purpose, an enhanced procedure was proposed. 

The procedure enables the incorporation of these developed algorithms and technologies into 

the manual process method. The efficiency of the proposed procedure can be further 

enhanced by improving the detection and recognition algorithms. The ultimate goal of a full 

automation can be achieved when the accuracy of the algorithms reach a satisfactory level. 

The preliminary assessment results, based on 47 traffic signs on I-95, demonstrate a 40% 

improvement over the manual data collection process (i.e. the frame-by-frame manual 

review).  

 Sign Asset – A real-world large-scale case study on traffic sign inventory and condition 

assessment  

A real-world large-scale case study was conducted on I-285 to practice the enhanced 

procedure for traffic sign inventory and condition assessment.  Other than the data collection 

productivity, the enhanced procedure greatly reduces the danger to engineers by enabling 

them to take inventory of signs without being exposed to roadway hazards, especially on 

interstate highways and near overhead signs.  Based on the case study, there are total 2,969 

signs on I-285. The majority of the installed traffic signs on interstate highways are messages 

signs that convey direction, destination, and service information (2,321 signs, 78.17%). Only 

limited number of warning signs and regulatory signs are installed to indicate hazardous 

conditions or regulate drivers’ behavior.  A large percentage of installed traffic signs are 

mounted on overhead structures on interstate highways (643 signs, 21.66%).  There are 252 

signs in poor condition that require sign maintenance action based on the sign condition 

assessment. 

Visual inspection on the high-resolution video log images reveals the possible reasons for 

damaged signs.  The most frequently occurring sign damage type is surface failure on 

milepost signs due to truck gusts. They are located on the concrete barriers, on roadsides, or 

on medians.  These signs are damaged by the strong truck gusts that are created by fast 

moving trucks. Another sign type suffering frequent damage is made up of exit signs that are 

damaged due to the instability of their dual posts. They are located at the interstate exits. The 
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inspection shows that the signs are damaged by the unbalanced vibration and twisting of the 

dual posts. In addition, post failures also frequently occur due to direct crash impact or soft 

bases. The only type of overhead sign that is damaged is D3-1 (i.e. street name sign) 

mounted on bridges.  The majority of D3-1 signs are damaged due to surface failure (i.e. 

color fading and erosion).    

 Sign Asset - Feasibility study of using mobile LiDAR for sign condition assessment 

To validate the use of mobile LiDAR for sign retroreflectivity condition assessment, ten 

Type I stop signs collected in a community in Savannah, Georgia, have been tested to 

demonstrate the feasibility of the tested LiDAR-based method. The ground truths were 

established using both nighttime visual inspection and retroreflectometer measurement. The 

retroreflectivity condition assessment results using the proposed method are consistent with 

all of the nighttime visual inspection results; they match 90% of the retroreflectometer 

measurement results in differentiating good and bad sign retroreflectivity conditions.  Using 

the developed mobile-LiDAR based method, coupled with the integrated GTSV, the traffic 

sign retroreflectivity condition assessment can potentially be conducted cost-effectively at 

highway speed.  

 Sign Asset - Develop a prototype GIS-based sign management system 

A prototype GIS-based sign management system was developed in this study. The objective 

is to demonstrate the capability of a GIS platform for integrating different data sources, 

including traffic sign data, video log images, and GIS maps, managing important traffic sign 

data, and supporting various sign maintenance practices. Though this prototype is not a 

comprehensive, final product, it is the foundation for full implementation in the future. 

 Pavement Asset - Network-level rut depth measurement using the 3D laser 

Rutting is one of the important pavement performance measures required by HPMS, and 

every state DOT is required to submit the data to FHWA annually. However, the point-based 

laser measurement methods (e.g. 3 points) commonly used by state DOTs may not be reliable 

due to vehicle wandering, variation of rut locations, and rut shapes. Preliminary test results 

show that 3-point and 5-point rut bar systems significantly underestimate the rut depth, and 



 

238 

 

the average relative measurement errors for 3-point and 5-point rut bar systems are about 

63% and 44%. If the number of sensors is more than 25, the relative measurement error drops 

constantly with a value below 10%. With a 39-point equally-spaced rut bar system, the 

relative measurement error is about 8%. 

Compared to the traditionally used manual and rut-bar measurement methods, the 3D laser 

has virtually 100% coverage in a travel lane width. It provides a more accurate and reliable 

method to measure rut depth than the traditional rut-bar method. According to laboratory and 

field tests, the 3D laser can provide rut depth measurements with satisfactory accuracy. The 

measurement error is within ±3mm and satisfies the accuracy requirements of many state 

transportation agencies. It is capable of performing project-level and network-level rutting 

condition assessment.  

Besides providing the information needed for network-level rutting condition assessment, the 

integrated 3D laser provides much denser rutting data. In cooperation with GDOT liaison 

engineers, case studies were performed on several state and non-state routes using the 

integrated 3D laser. A systematic approach was developed to aggregate the raw, continuous 

rut depth measurements on each pavement segment and to generate different statistical 

indicators that can provide added value to engineers of state DOTs. In comparison with 

GDOT’s past rutting survey results, the 3D laser can provide more useful network-level 

rutting data and better support the network-level maintenance decision making. It was 

suggested by GDOT liaison engineers that the 60th percentile rut depth is a good rutting 

indicator on each pavement segment.  

 Pavement Asset - Identify isolated ruts using the 3D laser in support of effective 

localized treatment 

The accurate and dense rutting information acquired from the 3D laser provides an 

opportunity to further identify the isolated ruts, which has never been done in the past due to 

the lack of continuous and accurate rutting measurements in longitudinal direction. The 

identification of isolated ruts can better support effective, low-cost localized pavement 

treatments, and the efficient use of the currently stringent pavement preservation funds. After 

discussing these issues with GDOT liaison engineers, four sets of criteria were proposed to 
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define an isolated rut: rut depth requirement, rut length requirement, rut division criterion, 

and rut termini determination criterion. Case studies on two selected roadway sections show 

the developed approach is applicable to and promising for use in transportation agencies’ 

pavement preservation practice. 

 Pavement Asset - Develop and validate a quantitative method to scientifically evaluate 

the performance of different automatic pavement crack detection algorithms 

Pavement distress segmentation is identified as a crucial step for automatic distress detection 

and classification. Researchers have developed many segmentation algorithms, but it is 

difficult to compare the performance of different algorithms efficiently without an accurate 

quantitative method. Also, it is hard for a transportation agency to perform a quality check 

when automatic pavement crack detection is applied in its data collection. To address these 

issues, a novel quantification method based on the buffered Hausdorff distance was 

developed to evaluate the performance of distress segmentation algorithms.  

The proposed method was compared with four other common quantification methods 

(MSE, SC, ROC, and Hausdorff distance) on both real data (raw downward pavement 

images acquired from GDOT) and synthetic data. It was found that the proposed buffered 

Hausdorff scoring measure accurately reflected the observed performance of the 

segmentation techniques and outperformed the other three quantification methods. Both 

MSE and SC are not sensitive to the relative proximity of the crack pixels between the 

segmented image and the ground truth image. The Hausdorff distance measure is very 

sensitive to outliers and is heavily influenced by isolated noise pixels that are far away from 

crack pixels. Thus, it does not accurately reflect the overall performance of a segmentation 

method. ROC is a useful scoring measure, but it suffers due to the fact that across a certain 

boundary, all crack pixels are either detected as true defects or false alarms. The proposed 

buffered Hausdorff distance measure gave evaluation results consistent with the visual 

performance inspection of different segmentation techniques. It also achieved good score 

separation to distinguish between the performance of different methods.  

Two potential applications of the proposed buffered Hausdorff distance measure were also 

explored, including the selection of proper distress segmentation algorithms and the 
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optimization of algorithm parameter settings. Because the distress classifier definitions vary 

among states and regions, the testing of segmentation precision is of critical importance in 

assessing the reliability of pavement distress segmentation algorithms. The proposed 

method provides a solution for transportation agencies to choose the proper pavement 

distress segmentation algorithm based on their own survey requirements and data format. 

Also, the proposed method provides an opportunity to optimize the parameter setting for each 

segmentation algorithm, since it gives sortable scoring measures for the algorithm 

performance under each parameter setting. Therefore, the proposed method is expected to 

help transportation agencies determine their automated pavement distress survey strategies. 

 Pavement Asset - Validate the asphalt pavement crack detection using the 3D laser 

The 3D laser is insensitive to different lighting conditions, low intensity contrast, and 

pavement oil marks, unlike the traditional line scan camera. Laboratory tests on fabricated 

crack samples show consistent detection results in daytime and nighttime. Cracks with 

widths greater than 2mm can be detected easily. However, a hairline crack with a width of 

approximately 1mm is hard to detect due to the current resolution of the integrated 3D laser. 

Field tests on Georgia SR 80 were conducted under three different lighting conditions, 

daytime with shadow, daytime without shadow, and nighttime. The crack detection results 

show very good consistency and the average difference of performance scores is less than 

2%. Though low intensity contrast is a challenge for the traditional line scan camera for crack 

detection, the test result shows no difficulty for the integrated 3D laser as long as the crack is 

distinct on surface depth change. Similarly, oil stains can be effectively removed from a 

possible falsely detected crack because of indistinguishable depth change.  

To validate the crack width measurement accuracy, 12 spots on two longitudinal cracks were 

selected on Georgia SR 275 with manually measured crack width as the ground truth. Cracks 

with widths greater than 2mm can be detected correctly. However, cracks equal to and less 

than 1mm cannot be detected correctly. Compared to the manually measured results, crack 

widths were captured well by the automatic method. The maximum absolute difference of 

crack width was 1mm, and the average absolute difference was 0.4mm. This result shows a 

promising potential to measure crack width for further crack classification tasks. While the 
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3D-line-laser-provided software can effectively detect the longitudinal crack widths, the 

transverse crack width cannot be reliably detected because the current data resolution in the 

driving direction is about 5mm. Improvement is needed in this area.  

 Pavement Asset - Feasibility Study of Crack Deterioration Behavior Using 3D Laser 

Data 

A feasibility study of asphalt pavement crack deterioration behavior was performed using 

long-term monitoring 3D laser data that has been collected since 2011 on a one-mile test site 

on Pooler Parkway near Savannah, Georgia.  First, the crack growth in length and width for 

two selected individual cracks was analyzed; second, the crack growth of clustered cracks in 

0.1-mile subsections was studied.  These two studies demonstrated the use of long-term 

monitoring 3D laser data to explore the detailed crack deterioration behavior at the levels of 

individual cracks and clustered cracks, which can be used to support a) fundamental study of 

pavement mechanics and deterioration behavior, b) validation of current pavement design 

methods and development of new design concepts and methods, c) determination of adequate 

treatment methods and timing, d) development of accurate and reliable pavement 

deterioration models, and e) development of cost-effective pavement maintenance 

programming, for example an intelligent crack sealing planning.      

2. Recommendations 

The performance of the above research focuses aimed at bridging the gap between the state-of-

the-practice CRS&SI technologies and GDOT and other state agencies’ practices; it also aimed 

at validating and promoting the use of technologies to improve the transportation asset data 

collection, condition assessment, and management. The research results show that using the 

automatic image-processing-based sign detection and recognition algorithms and the LiDAR-

based sign detection can improve the current time-consuming image-based traffic sign data 

collection process. It also shows that the 3D laser is promising for producing an accurate and 

reliable rutting measurement that can be used as a standard rut measurement for HPMS. In 

addition, the validated 3D laser technology has the potential to advance automatic crack 

detection by better addressing low intensity contrast and poor lighting conditions. The following 

suggest the future research and implementation:  
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 The large-scale case study on I-285 traffic sign inventory and condition assessment shows 

that the proposed enhanced sign inventory procedure using video log images and mobile 

LiDAR is very promising and can greatly reduce the effort of manual sign data collection 

especially on interstate highways.  It is suggested that, using the proposed and validated 

method, a comprehensive sign inventory could be done for the entire 2,500-centerline-mile 

interstate highways in Georgia. 

 Sign retroreflectivity condition assessment is of great concern in GDOT and other state 

agencies.  The current preliminary study on engineer grade STOP signs show that mobile 

LiDAR could be a promising alternative to the time-consuming manual method for sign 

retroreflectivity condition assessment.  However, further tests on more engineer grade STOP 

signs with different retroreflectivity conditions are still needed.  Also, tests on other types of 

traffic signs, e.g. speed limit signs, warning signs, etc., with different sheeting materials are 

needed to study the sensitivity of the proposed method on different colors and sheeting 

materials. 

 The currently developed prototype of the GIS-based sign management system has 

demonstrated the capability to integrate different spatial and non-spatial data sources, such as 

GIS maps, roadway images, and sign data, and improve sign management and maintenance 

practice. Next, a pilot study is suggested to further materialize the functionalities by using a 

large-scale dataset and introducing the GDOT’s practice on sign management and 

maintenance.  

 The comprehensive validation of network-level rutting measurement and isolated rutting 

detection shows that the 3D laser technology can be used to conduct the statewide rutting 

data collection.  In considering the difficulty for measuring rut depth on interstate highways, 

especially on the high-traffic-volume highways like I-285, it is suggested to firstly conduct 

rutting data collection for the entire 2,500-centerline-mile interstate highways.  The collected 

data can be used for two purpose.  First, the data can be fed into COPACES database.  Thus, 

the current manual rutting data collection on interstate highway can be replaced by the 

automatic method.  Second, the full-coverage rutting data can further be used to identify 

isolated spots where rutting is a problem and local treatment can be done.  
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 The validated crack detection using 3D laser data shows that this technology is capable of 

collecting cracking data.  Along with the validation of crack classification that is under 

development in an on-going research project (RS-GAMS Phase 2), the results can be fed into 

COPACES, which is very useful for high-traffic-volume interstate highways.  After the 

validation of crack classification is done, it is suggested to conduct a cracking survey for the 

entire interstate highways in Georgia. 

 Data collection vehicle lateral wandering causes the variation of data sampling area/region.  

To mitigate the impact of this issue, more robust algorithms are needed for pavement 

marking detection, even in the case when a pavement marking is missed, and crack detection.  

Furthermore, a mechanism is needed to facilitate a vehicle driver's ability to conveniently 

maintain the vehicle in the middle of a lane while sensing data is being collected. 

 The evaluation of crack width increasing rate was based an assumption that new cracks fall 

into the category of the tightest cracks without further checking whether the excluded cracks 

were actually new cracks or not.  This assumption could create some data variation because 

the tight, old cracks could, also, be excluded.  Thus, developing a crack registration method 

to spatially align cracks that are collected at different timestamps is recommended; then, the 

behavior of crack width changing can be studied for spatially registered individual cracks or 

clustered cracks. 

 The current 3D laser technology is capable of collecting project-level and network-level 

pavement distress data for purpose of pavement management and maintenance.  However, 

studying detailed pavement crack deterioration behavior requires higher resolution of 3D 

laser data to detect finer cracks.  The 3D laser system used in this study has a resolution of 5 

mm at longitudinal direction, which limits the capability to detect and measure the width of 

fine transverse cracks.  Thus, there is still a need to enhance the resolution of 3D laser 

system.  Fortunately, some manufacturers started to develop the new 3D laser system with 1 

mm resolutions. 
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 In current study, length-weighted average and median (50th percentile) crack widths are used 

to analyze the crack-width-related crack propagation.  To provide more informative statistics 

that can be more relevant to pavement maintenance, rehabilitation, and reconstruction 

(MR&R), other factors, e.g. 75th, 90th, or 95th percentiles, can be used to represent the overall 

crack width.  Further discussion with pavement engineers and experts will be needed. 
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Appendix I: List of Poor Condition Signs on I-285
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RCLINK  Milepoint  MUTCD  Visual Condition 

0891040700  8.357  W8‐13  Surface/Post Failure 

1211040700  24.365  I13  Surface/Post Failure 

1211040700  3.244  D10‐3  Surface/Post Failure 

0891040700  25.407  W4‐1  Surface Failure 

0891040700  25.443  W4‐1  Surface Failure 

1211040700  25.989  Unknown  Surface Failure 

0891040700  3.584  Unknown  Surface Failure 

1211040700  10.720  R2‐4  Surface Failure 

1211040700  2.538  R2‐1  Surface Failure 

0671040700  6.620  Missing  Surface Failure 

0891040700  22.925  I‐3  Surface Failure 

0891040700  22.013  I‐3  Surface Failure 

1211040700  24.926  E5‐1A  Surface Failure 

1211040700  21.896  E5‐1A  Surface Failure 

0671040700  2.796  E5‐1A  Surface Failure 

0891040700  25.609  E5‐1A  Surface Failure 

0891040700  23.813  E5‐1A  Surface Failure 

0891040700  19.226  E5‐1A  Surface Failure 

0891040700  11.323  E5‐1A  Surface Failure 

0891040700  12.447  E5‐1A  Surface Failure 

0891040700  14.546  E5‐1A  Surface Failure 

0891040700  6.062  E5‐1A  Surface Failure 

0891040700  6.712  E5‐1A  Surface Failure 

1211040700  26.332  E5‐1a  Surface Failure 

0891040700  15.956  E5‐1a  Surface Failure 

1211040700  54.252  E5‐1a  Surface Failure 

0891040700  24.394  E5‐1a  Surface Failure 

0891040700  18.456  E5‐1a  Surface Failure 

1211040700  12.420  E5‐1  Surface Failure 

0891040700  12.166  E5‐1  Surface Failure 

0891040700  13.710  E5‐1  Surface Failure 

0891040700  3.854  E5‐1  Surface Failure 

1211040700  21.420  E5‐1  Surface Failure 

0631040700  0.505  D9‐18E  Surface Failure 

0891040700  12.743  D9‐18E  Surface Failure 

0671040700  5.294  D3‐1  Surface Failure 

0671040700  2.608  D3‐1  Surface Failure 

0671040700  2.624  D3‐1  Surface Failure 

0671040700  1.341  Dc3‐1  Surface Failure 
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RCLINK  Milepoint  MUTCD  Visual Condition 

0671040700  1.333  D3‐1  Surface Failure 

0671040700  2.635  D3‐1  Surface Failure 

0671040700  5.241  D3‐1  Surface Failure 

1211040700  23.073  D10‐3  Surface Failure 

1211040700  23.075  D10‐3  Surface Failure 

1211040700  25.797  D10‐3  Surface Failure 

0891040700  1.672  D10‐3  Surface Failure 

0891040700  13.946  D10‐3  Surface Failure 

0891040700  9.784  D10‐3  Surface Failure 

0891040700  9.388  D10‐3  Surface Failure 

0891040700  8.597  D10‐3  Surface Failure 

0891040700  5.628  D10‐3  Surface Failure 

0891040700  5.430  D10‐3  Surface Failure 

0891040700  5.037  D10‐3  Surface Failure 

0891040700  4.240  D10‐3  Surface Failure 

0891040700  4.837  D10‐3  Surface Failure 

0891040700  9.586  D10‐3  Surface Failure 

0891040700  19.686  D10‐3  Surface Failure 

0891040700  18.893  D10‐3  Surface Failure 

0891040700  18.101  D10‐3  Surface Failure 

0891040700  17.111  D10‐3  Surface Failure 

0891040700  17.704  D10‐3  Surface Failure 

0891040700  21.865  D10‐3  Surface Failure 

0891040700  22.658  D10‐3  Surface Failure 

1211040700  21.313  D10‐3  Surface Failure 

0891040700  0.091  D10‐3  Surface Failure 

0891040700  17.507  D10‐3  Surface Failure 

1211040700  61.679  D10‐3  Surface Failure 

1211040700  60.984  D10‐3  Surface Failure 

0631040700  5.340  D10‐3  Surface Failure 

0631040700  2.761  D10‐3  Surface Failure 

0631040700  1.965  D10‐3  Surface Failure 

0631040700  0.983  D10‐3  Surface Failure 

0631040700  0.193  D10‐3  Surface Failure 

1211040700  3.244  D10‐3  Surface Failure 

1211040700  6.249  D10‐3  Surface Failure 

1211040700  8.224  D10‐3  Surface Failure 

1211040700  23.623  D10‐3  Surface Failure 

0671040700  7.133  D10‐3  Surface Failure 

1211040700  21.101  D10‐3  Surface Failure 

1211040700  21.101  D10‐3  Surface Failure 

1211040700  24.062  D10‐3  Surface Failure 
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RCLINK  Milepoint  MUTCD  Visual Condition 

0631040700  1.380  D10‐3  Surface Failure 

0631040700  1.182  D10‐3  Surface Failure 

0891040700  17.112  D10‐3  Surface Failure 

0891040700  11.231  D10‐3  Surface Failure 

0891040700  6.195  D10‐3  Surface Failure 

0891040700  5.431  D10‐3  Surface Failure 

0891040700  5.629  D10‐3  Surface Failure 

0891040700  5.233  D10‐3  Surface Failure 

1211040700  25.798  D10‐3  Surface Failure 

0891040700  1.672  D10‐3  Surface Failure 

0891040700  4.241  D10‐3  Surface Failure 

0891040700  4.439  D10‐3  Surface Failure 

0891040700  5.431  D10‐3  Surface Failure 

0891040700  5.629  D10‐3  Surface Failure 

0891040700  8.599  D10‐3  Surface Failure 

0891040700  9.587  D10‐3  Surface Failure 

0891040700  11.966  D10‐3  Surface Failure 

0891040700  13.947  D10‐3  Surface Failure 

0891040700  17.112  D10‐3  Surface Failure 

0891040700  17.705  D10‐3  Surface Failure 

0891040700  18.498  D10‐3  Surface Failure 

0891040700  18.894  D10‐3  Surface Failure 

0891040700  19.687  D10‐3  Surface Failure 

0891040700  21.865  D10‐3  Surface Failure 

0891040700  22.656  D10‐3  Surface Failure 

0891040700  24.736  D10‐3  Surface Failure 

1211040700  53.093  D10‐3  Surface Failure 

0631040700  0.193  D10‐3  Surface Failure 

0631040700  0.983  D10‐3  Surface Failure 

0631040700  1.964  D10‐3  Surface Failure 

0631040700  2.760  D10‐3  Surface Failure 

0631040700  5.339  D10‐3  Surface Failure 

0631040700  5.337  D10‐3  Surface Failure 

1211040700  8.224  D10‐3  Surface Failure 

1211040700  8.627  D10‐3  Surface Failure 

1211040700  11.716  D10‐3  Surface Failure 

1211040700  13.195  D10‐3  Surface Failure 

0671040700  4.508  D10‐3  Surface Failure 

1211040700  23.076  D10‐3  Surface Failure 

1211040700  6.644  D10‐3  Surface Failure 

0891040700  4.839  D10‐3  Surface Failure 

1211040700  61.473  D10‐3  Surface Failure 
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RCLINK  Milepoint  MUTCD  Visual Condition 

0891040700  6.816  D10‐3  Surface Failure 

0671040700  2.380  D10‐3  Surface Failure 

1211040700  8.426  D10‐3  Surface Failure 

0671040700  6.736  D10‐3  Surface Failure 

1211040700  20.888  D10‐3  Surface Failure 

1211040700  11.716  D10‐3  Surface Failure 

0671040700  4.509  D10‐3  Surface Failure 

0891040700  6.913  D10‐2  Surface Failure 

0891040700  22.756  D10‐2  Surface Failure 

0891040700  14.839  D10‐2  Surface Failure 

1211040700  53.403  D10‐2  Surface Failure 

1211040700  22.805  D10‐2  Surface Failure 

0671040700  1.647  D10‐2  Surface Failure 

0631040700  1.670  D10‐2  Surface Failure 

0891040700  10.875  D10‐2  Surface Failure 

0891040700  1.969  D10‐2  Surface Failure 

0891040700  22.755  D10‐2  Surface Failure 

1211040700  53.403  D10‐2  Surface Failure 

1211040700  61.170  D10‐2  Surface Failure 

1211040700  61.436  D10‐2  Surface Failure 

0891040700  14.838  D10‐2  Surface Failure 

1211040700  62.188  D10‐2  Surface Failure 

1211040700  60.877  D10‐2  Surface Failure 

1211040700  8.929  D10‐1  Surface Failure 

1211040700  6.931  D10‐1  Surface Failure 

1211040700  9.210  ClickIt  Surface Failure 

0891040700  3.552  BuckleUp  Surface Failure 

0891040700  18.639  W9‐1  Post Failure 

0891040700  17.978  W8‐13  Post Failure 

0891040700  24.919  W8‐13  Post Failure 

0631040700  2.551  W8‐13  Post Failure 

1211040700  25.996  W4‐3  Post Failure 

0891040700  19.366  W4‐3  Post Failure 

0891040700  23.797  W4‐3  Post Failure 

1211040700  62.348  W4‐3  Post Failure 

0891040700  5.060  W4‐2  Post Failure 

1211040700  26.227  W4‐1  Post Failure 

0891040700  16.160  W4‐1  Post Failure 

1211040700  6.813  W4‐1  Post Failure 

0891040700  3.669  W1‐1  Post Failure 

1211040700  13.131  ThrowingTrash  Post Failure 

0891040700  6.057  ThrowingTrash  Post Failure 
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RCLINK  Milepoint  MUTCD  Visual Condition 

0891040700  20.411  ThrowingTrash  Post Failure 

1211040700  54.620  ThrowingTrash  Post Failure 

1211040700  53.453  ThrowingTrash  Post Failure 

1211040700  25.725  RightLaneExitOnly  Post Failure 

1211040700  9.670  RightLaneExitOnly  Post Failure 

1211040700  6.245  R2‐4  Post Failure 

0671040700  6.361  R2‐4  Post Failure 

1211040700  0.459  R2‐1  Post Failure 

1211040700  1.013  R2‐1  Post Failure 

1211040700  2.958  R2‐1  Post Failure 

1211040700  5.710  R2‐1  Post Failure 

1211040700  7.674  R2‐1  Post Failure 

1211040700  25.290  R2‐1  Post Failure 

0891040700  22.878  NoDUI  Post Failure 

1211040700  8.616  M3‐3  Post Failure 

0891040700  23.230  M3‐2  Post Failure 

1211040700  8.616  M1‐1  Post Failure 

0891040700  16.679  M1‐1  Post Failure 

1211040700  11.204  I13‐A  Post Failure 

0631040700  0.686  GAHero  Post Failure 

1211040700  9.489  E5‐1a  Post Failure 

1211040700  22.994  E5‐1  Post Failure 

0891040700  11.163  E5‐1  Post Failure 

1211040700  11.329  E5‐1  Post Failure 

0891040700  13.223  D12‐5  Post Failure 

0891040700  23.264  D12‐5  Post Failure 

1211040700  22.803  D10‐3  Post Failure 

1211040700  12.221  D10‐3  Post Failure 

1211040700  22.912  D10‐3  Post Failure 

1211040700  26.000  D10‐3  Post Failure 

0891040700  8.004  D10‐3  Post Failure 

0891040700  10.179  D10‐3  Post Failure 

0891040700  13.349  D10‐3  Post Failure 

0891040700  21.666  D10‐3  Post Failure 

0891040700  22.458  D10‐3  Post Failure 

0891040700  24.440  D10‐3  Post Failure 

1211040700  3.872  D10‐3  Post Failure 

1211040700  8.984  D10‐3  Post Failure 

1211040700  11.260  D10‐3  Post Failure 

1211040700  5.849  D10‐3  Post Failure 

1211040700  2.614  D10‐3  Post Failure 

0631040700  4.748  D10‐3  Post Failure 
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RCLINK  Milepoint  MUTCD  Visual Condition 

0631040700  2.958  D10‐3  Post Failure 

1211040700  54.489  D10‐3  Post Failure 

1211040700  53.710  D10‐3  Post Failure 

0891040700  17.706  D10‐3  Post Failure 

0891040700  11.967  D10‐3  Post Failure 

0891040700  10.774  D10‐3  Post Failure 

1211040700  21.506  D10‐3  Post Failure 

1211040700  6.050  D10‐3  Post Failure 

1211040700  9.875  D10‐2  Post Failure 

1211040700  1.987  D10‐1  Post Failure 

1211040700  25.969  ClickIt  Post Failure 

1211040700  10.538  BuckleUp  Post Failure 

1211040700  8.780  BuckleUp  Post Failure 

0631040700  2.124  W8‐13  Obstructed 

0671040700  6.690  W8‐13  Obstructed 

0891040700  18.712  W4‐1  Obstructed 

0891040700  3.759  W13‐3  Obstructed 

0891040700  18.948  W13‐2  Obstructed 

0891040700  19.026  ThrowingTrash  Obstructed 

0891040700  4.804  R2‐1  Obstructed 

0891040700  17.907  R2‐1  Obstructed 

0891040700  5.695  NoDUI  Obstructed 

0891040700  18.052  M3‐1  Obstructed 

0891040700  18.052  M1‐1  Obstructed 

0891040700  18.840  I‐3  Obstructed 

0891040700  0.836  I‐3  Obstructed 

0891040700  4.744  GAHero  Obstructed 

0891040700  18.816  E5‐1A  Obstructed 

1211040700  4.616  D3‐1  Obstructed 

0891040700  1.136  D2‐1  Obstructed 

0891040700  3.008  D10‐3  Obstructed 

1211040700  5.250  D10‐3  Obstructed 

0891040700  2.463  D10‐3  Obstructed 

1211040700  10.151  D10‐2  Obstructed 

0891040700  13.343  W8‐13  Dirty 

0891040700  25.812  W4‐1  Dirty 

0891040700  2.242  SlowerTraffic  Dirty 

0891040700  14.824  R7‐201a  Dirty 

1211040700  53.256  R2‐1  Dirty 

0891040700  20.402  I‐3  Dirty 

1211040700  60.870  D10‐3  Dirty 

0891040700  9.785  D10‐3  Dirty 
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RCLINK  Milepoint  MUTCD  Visual Condition 

0891040700  3.644  D10‐3  Dirty 

1211040700  54.311  D10‐3  Dirty 

0631040700  0.585  D10‐3  Dirty 
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Post Failure (73 Cases) 
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Obstructed (21 Cases) 
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Dirty (11 Cases) 
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Appendix II: List of Overhead Signs on I-285 
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RCLINK  Milepoint  MUTCD  Overhead Type 

1211040700  0.044  E1‐1  Sign Bridge 

1211040700  0.045  E6‐2A  Sign Bridge 

0631040700  0.114  E6‐2A  Sign Bridge 

0631040700  0.114  NoTrucks  Sign Bridge 

0631040700  0.114  E11‐1  Sign Bridge 

1211040700  0.314  E6‐2A  Sign Bridge 

1211040700  0.315  E11‐1  Sign Bridge 

0631040700  0.621  E6‐2A  Sign Bridge 

0631040700  0.626  E11‐1  Sign Bridge 

0631040700  0.627  E6‐2A  Sign Bridge 

1211040700  0.796  E6‐2A  Sign Bridge 

1211040700  0.802  E1‐1  Sign Bridge 

1211040700  0.802  NoTrucks  Sign Bridge 

0631040700  0.802  E11‐1  Sign Bridge 

0631040700  0.803  E6‐2A  Sign Bridge 

0631040700  0.803  E6‐2A  Sign Bridge 

1211040700  0.902  E1‐1  Sign Bridge 

1211040700  0.906  E1‐1  Sign Bridge 

1211040700  1.009  E6‐2  Sign Bridge 

0631040700  1.228  E11‐2  Sign Bridge 

0631040700  1.229  E6‐2A  Sign Bridge 

0631040700  1.230  E11‐1D  Sign Bridge 

0631040700  1.230  E6‐2A  Sign Bridge 

0631040700  1.501  E11‐1  Sign Bridge 

0631040700  1.502  E6‐2A  Sign Bridge 

0631040700  1.502  E6‐2A  Sign Bridge 

0631040700  1.502  E6‐2A  Sign Bridge 

0631040700  1.502  E11‐1  Sign Bridge 

0671040700  1.560  E1‐1  Sign Bridge 

0631040700  1.687  E6‐2A  Sign Bridge 

0631040700  1.687  E6‐2A  Sign Bridge 

1211040700  1.892  E1‐1  Sign Bridge 

1211040700  1.892  E1‐1  Sign Bridge 

0891040700  1.969  NoTrucks  Sign Bridge 

0891040700  1.970  E1‐1  Sign Bridge 

0891040700  1.971  E1‐1  Sign Bridge 

0631040700  2.057  E11‐1E  Sign Bridge 

0631040700  2.065  E11‐2  Sign Bridge 



 
   

II-3 
 

RCLINK  Milepoint  MUTCD  Overhead Type 

0631040700  2.066  E11‐1  Sign Bridge 

1211040700  2.087  E6‐2A  Sign Bridge 

0671040700  2.412  MoveAccident  Sign Bridge 

0671040700  2.414  E6‐2  Sign Bridge 

1211040700  2.472  E6‐2  Sign Bridge 

0631040700  2.628  E6‐2A  Sign Bridge 

0671040700  2.862  StateLaw  Sign Bridge 

0671040700  2.862  E6‐2  Sign Bridge 

0631040700  2.891  E6‐2A  Sign Bridge 

0631040700  2.891  E6‐2A  Sign Bridge 

0631040700  3.001  E6‐2A  Sign Bridge 

0631040700  3.001  E6‐2A  Sign Bridge 

0891040700  3.003  E1‐1  Sign Bridge 

0891040700  3.005  E1‐1  Sign Bridge 

0891040700  3.007  StateLaw  Sign Bridge 

0891040700  3.372  E6‐2  Sign Bridge 

0891040700  3.374  D2‐3  Sign Bridge 

0631040700  3.507  E1‐1  Sign Bridge 

0631040700  3.511  E1‐1  Sign Bridge 

0631040700  3.524  E6‐2A  Sign Bridge 

0631040700  3.525  E6‐2A  Sign Bridge 

0631040700  3.525  E11‐1  Sign Bridge 

0891040700  3.573  E6‐2  Sign Bridge 

0891040700  3.573  NoTrucks  Sign Bridge 

0891040700  3.573  E6‐2  Sign Bridge 

0891040700  3.574  MoveAccident  Sign Bridge 

0891040700  3.744  E1‐1  Sign Bridge 

0891040700  3.744  E6‐2  Sign Bridge 

0891040700  3.744  E6‐2  Sign Bridge 

0891040700  3.808  E1‐1  Sign Bridge 

0891040700  3.808  E6‐2A  Sign Bridge 

0891040700  3.808  NoTrucks  Sign Bridge 

0631040700  3.822  E11‐1  Sign Bridge 

0631040700  3.822  E6‐2A  Sign Bridge 

0631040700  3.822  E6‐2A  Sign Bridge 

0631040700  3.823  E6‐2A  Sign Bridge 

0671040700  3.881  NoTrucks  Sign Bridge 

0671040700  3.883  E6‐2  Sign Bridge 

0891040700  3.905  E5‐1A  Sign Bridge 

0631040700  3.977  E1‐1  Sign Bridge 

0631040700  3.977  E1‐1  Sign Bridge 

0891040700  4.003  E1‐1  Sign Bridge 



 
   

II-4 
 

RCLINK  Milepoint  MUTCD  Overhead Type 

0891040700  4.004  E6‐2A  Sign Bridge 

0891040700  4.004  E11‐1  Sign Bridge 

0891040700  4.004  MoveAccident  Sign Bridge 

0671040700  4.117  E1‐1  Sign Bridge 

0891040700  4.348  E1‐1  Sign Bridge 

0891040700  4.351  E1‐1  Sign Bridge 

0891040700  4.351  E1‐1  Sign Bridge 

1211040700  4.390  E6‐2A  Sign Bridge 

1211040700  4.391  E1‐1  Sign Bridge 

0631040700  4.430  E1‐1  Sign Bridge 

0631040700  4.430  E1‐1  Sign Bridge 

0631040700  4.515  E6‐2A  Sign Bridge 

0671040700  4.549  E6‐2  Sign Bridge 

0891040700  4.607  E11‐1  Sign Bridge 

0891040700  4.608  E1‐1  Sign Bridge 

0891040700  4.608  E6‐2A  Sign Bridge 

0671040700  4.779  E1‐1  Sign Bridge 

0671040700  4.785  E1‐1  Sign Bridge 

0891040700  4.813  NoTrucks  Sign Bridge 

1211040700  4.814  E1‐1  Sign Bridge 

1211040700  4.814  E6‐2  Sign Bridge 

0891040700  4.814  E6‐2  Sign Bridge 

0891040700  4.817  E6‐2  Sign Bridge 

0891040700  4.821  E6‐2  Sign Bridge 

0891040700  4.830  StateLaw  Sign Bridge 

0891040700  4.830  E1‐1  Sign Bridge 

0891040700  4.831  E6‐2A  Sign Bridge 

0631040700  5.068  E6‐2A  Sign Bridge 

0891040700  5.071  E6‐2  Sign Bridge 

0891040700  5.081  E6‐2  Sign Bridge 

0891040700  5.082  E6‐2  Sign Bridge 

0631040700  5.221  E6‐2A  Sign Bridge 

0631040700  5.231  E6‐2A  Sign Bridge 

0631040700  5.232  E11‐1  Sign Bridge 

0891040700  5.273  E11‐1  Sign Bridge 

0891040700  5.274  E6‐2A  Sign Bridge 

0891040700  5.274  E6‐2A  Sign Bridge 

0891040700  5.299  E6‐2  Sign Bridge 

0891040700  5.299  E6‐2  Sign Bridge 

0891040700  5.300  E6‐2  Sign Bridge 

0891040700  5.414  E6‐2  Sign Bridge 

0891040700  5.414  E6‐2  Sign Bridge 



 
   

II-5 
 

RCLINK  Milepoint  MUTCD  Overhead Type 

0891040700  5.432  E6‐2  Sign Bridge 

0891040700  5.432  E6‐2  Sign Bridge 

0891040700  5.444  E11‐1  Sign Bridge 

0891040700  5.444  E6‐2A  Sign Bridge 

0891040700  5.444  E6‐2A  Sign Bridge 

0671040700  5.452  E1‐1  Sign Bridge 

0671040700  5.453  NoTrucks  Sign Bridge 

0671040700  5.455  E1‐1  Sign Bridge 

0631040700  5.528  E6‐2A  Sign Bridge 

0631040700  5.528  E11‐1  Sign Bridge 

0631040700  5.529  E6‐2A  Sign Bridge 

0631040700  5.719  E6‐2A  Sign Bridge 

0631040700  5.720  E6‐2A  Sign Bridge 

0671040700  5.803  E6‐2  Sign Bridge 

0671040700  5.810  E6‐2  Sign Bridge 

0631040700  5.837  E1‐1  Sign Bridge 

0631040700  5.838  E1‐1  Sign Bridge 

0671040700  5.977  E6‐2  Sign Bridge 

0671040700  5.980  E6‐2  Sign Bridge 

0671040700  5.989  E6‐2  Sign Bridge 

0891040700  6.149  E6‐2  Sign Bridge 

0891040700  6.151  E6‐2  Sign Bridge 

0891040700  6.164  E11‐1  Sign Bridge 

0891040700  6.164  E6‐2A  Sign Bridge 

0891040700  6.226  E6‐2A  Sign Bridge 

0891040700  6.226  E6‐2A  Sign Bridge 

0891040700  6.277  E6‐2  Sign Bridge 

0891040700  6.279  E6‐2  Sign Bridge 

1211040000  6.722  E6‐2  Sign Bridge 

1211040000  6.722  E6‐2A  Sign Bridge 

1211040700  6.757  NoTrucks  Sign Bridge 

1211040700  6.758  E6‐2A  Sign Bridge 

0891040700  6.815  E1‐1  Sign Bridge 

0891040700  6.815  E11‐1  Sign Bridge 

0891040700  6.815  E6‐2A  Sign Bridge 

1211040000  6.898  E6‐2A  Sign Bridge 

1211040000  6.899  E6‐2A  Sign Bridge 

1211040000  6.899  E6‐2  Sign Bridge 

0671040700  6.934  E6‐2  Sign Bridge 

0671040700  6.934  E6‐2A  Sign Bridge 

0671040700  6.934  E11‐1  Sign Bridge 

0671040700  6.937  E11‐1  Sign Bridge 



 
   

II-6 
 

RCLINK  Milepoint  MUTCD  Overhead Type 

0671040700  6.939  E6‐2  Sign Bridge 

0671040700  6.945  NoTrucks  Sign Bridge 

0671040700  6.945  E1‐1  Sign Bridge 

0891040700  6.996  E6‐2A  Sign Bridge 

0891040700  6.998  E6‐2A  Sign Bridge 

0891040700  6.998  E6‐2A  Sign Bridge 

0891040700  6.999  E11‐1  Sign Bridge 

1211040700  7.165  E6‐2  Sign Bridge 

0671040700  7.303  E6‐2A  Sign Bridge 

0671040700  7.306  E6‐2  Sign Bridge 

0671040700  7.307  E11‐1  Sign Bridge 

0671040700  7.308  E11‐1  Sign Bridge 

0891040700  7.395  E11‐1  Sign Bridge 

0891040700  7.395  E6‐2A  Sign Bridge 

0891040700  7.396  E1‐1  Sign Bridge 

0891040700  8.229  E1‐1  Sign Bridge 

0891040700  8.230  E1‐1  Sign Bridge 

1211040700  8.394  E1‐1  Sign Bridge 

1211040700  8.400  E1‐1  Sign Bridge 

1211040700  8.646  TrucksAllowed  Sign Bridge 

1211040700  8.648  DIAG  Sign Bridge 

0891040700  8.716  E6‐2  Sign Bridge 

1211040700  8.896  E6‐2A  Sign Bridge 

1211040700  9.419  E6‐2A  Sign Bridge 

1211040700  9.421  TrucksAllowed  Sign Bridge 

1211040700  9.421  E11‐1  Sign Bridge 

1211040700  9.421  E6‐2A  Sign Bridge 

0891040700  9.947  E6‐2  Sign Bridge 

1211040700  9.967  E6‐2  Sign Bridge 

1211040700  10.095  E6‐2  Sign Bridge 

1211040700  10.097  E11‐1  Sign Bridge 

1211040700  10.328  E11‐1C  Sign Bridge 

1211040700  10.332  DIAG  Sign Bridge 

0891040700  10.423  E6‐2  Sign Bridge 

0891040700  10.427  E1‐1  Sign Bridge 

0891040700  10.827  E1‐1  Sign Bridge 

0891040700  10.827  E1‐1  Sign Bridge 

0891040700  10.829  StateLaw  Sign Bridge 

1211040700  10.912  E11‐1C  Sign Bridge 

1211040700  10.913  DIAG  Sign Bridge 

0891040700  11.049  E6‐2  Sign Bridge 

0891040700  11.050  E6‐2  Sign Bridge 



 
   

II-7 
 

RCLINK  Milepoint  MUTCD  Overhead Type 

0891040700  11.050  E6‐2  Sign Bridge 

1211040700  11.267  E6‐2  Sign Bridge 

0891040700  11.323  E6‐2  Sign Bridge 

0891040700  11.374  D10‐3  Sign Bridge 

0891040700  11.374  E6‐2A  Sign Bridge 

0891040700  11.630  E1‐1  Sign Bridge 

0891040700  11.633  E6‐2A  Sign Bridge 

0891040700  11.633  E11‐1  Sign Bridge 

1211040700  11.662  TrucksAllowed  Sign Bridge 

1211040700  11.662  E6‐2  Sign Bridge 

0891040700  11.805  E1‐1  Sign Bridge 

0891040700  11.806  E11‐1  Sign Bridge 

0891040700  11.806  E6‐2A  Sign Bridge 

0891040700  11.808  E1‐1  Sign Bridge 

0891040700  12.084  E1‐1  Sign Bridge 

0891040700  12.084  MoveAccident  Sign Bridge 

1211040700  12.379  StateLaw  Sign Bridge 

1211040700  12.379  E6‐2  Sign Bridge 

0891040700  12.513  E1‐1  Sign Bridge 

0891040700  12.514  E6‐2A  Sign Bridge 

0891040700  12.514  E1‐1  Sign Bridge 

0891040700  12.590  E1‐1  Sign Bridge 

0891040700  12.932  E1‐1  Sign Bridge 

0891040700  12.936  E1‐1  Sign Bridge 

0891040700  13.085  E1‐1  Sign Bridge 

0891040700  13.429  MoveAccident  Sign Bridge 

0891040700  13.432  E1‐1  Sign Bridge 

0891040700  13.582  E1‐1  Sign Bridge 

0891040700  14.672  E6‐2A  Sign Bridge 

0891040700  14.805  E6‐2A  Sign Bridge 

0891040700  14.816  E1‐1  Sign Bridge 

0891040700  15.157  E1‐1  Sign Bridge 

0891040700  16.316  E6‐2A  Sign Bridge 

0891040700  16.317  E6‐2A  Sign Bridge 

0891040700  16.553  E1‐1  Sign Bridge 

0891040700  16.563  E1‐1  Sign Bridge 

0891040700  17.362  StateLaw  Sign Bridge 

0891040700  17.364  E6‐2A  Sign Bridge 

0891040700  17.516  DIAG  Sign Bridge 

0891040700  17.844  E1‐1  Sign Bridge 

0891040700  17.999  DIAG  Sign Bridge 

0891040700  18.243  NoTrucks  Sign Bridge 



 
   

II-8 
 

RCLINK  Milepoint  MUTCD  Overhead Type 

0891040700  18.245  E1‐1  Sign Bridge 

0891040700  18.383  E6‐2A  Sign Bridge 

0891040700  18.384  E1‐11F  Sign Bridge 

0891040700  18.386  E6‐2A  Sign Bridge 

0891040700  18.921  E6‐2A  Sign Bridge 

0891040700  19.376  E11‐1  Sign Bridge 

0891040700  19.378  E6‐2A  Sign Bridge 

0891040700  19.378  E1‐1  Sign Bridge 

0891040700  19.749  E1‐1  Sign Bridge 

0891040700  19.751  E6‐2A  Sign Bridge 

0891040700  20.217  E11‐1  Sign Bridge 

0891040700  20.217  E1‐1  Sign Bridge 

0891040700  20.218  E6‐2A  Sign Bridge 

0891040700  20.602  E6‐2A  Sign Bridge 

1211040700  21.017  E11‐1  Sign Bridge 

1211040700  21.017  NoTrucks  Sign Bridge 

0891040700  21.458  E6‐2A  Sign Bridge 

0891040700  21.458  E6‐2A  Sign Bridge 

1211040700  21.754  DIAG  Sign Bridge 

0891040700  23.492  E6‐2A  Sign Bridge 

0891040700  23.492  E1‐1  Sign Bridge 

1211040700  23.899  E1‐1  Sign Bridge 

1211040700  23.902  E1‐1  Sign Bridge 

0891040700  24.000  E6‐2A  Sign Bridge 

0891040700  24.000  E11‐1  Sign Bridge 

0891040700  24.003  E1‐1  Sign Bridge 

0891040700  24.299  E6‐2A  Sign Bridge 

0891040700  24.299  E11‐1  Sign Bridge 

0891040700  24.299  E6‐2A  Sign Bridge 

0891040700  24.693  E1‐1  Sign Bridge 

0891040700  24.695  E1‐1  Sign Bridge 

1211040700  24.836  E1‐1  Sign Bridge 

0891040700  25.073  E6‐2A  Sign Bridge 

1211040700  25.520  E6‐2  Sign Bridge 

1211040700  25.520  E6‐2  Sign Bridge 

1211040700  25.522  E6‐2  Sign Bridge 

1211040700  25.523  E6‐2A  Sign Bridge 

0891040700  25.676  E6‐2A  Sign Bridge 

0891040700  25.676  E6‐2A  Sign Bridge 

1211040700  26.628  E11‐1  Sign Bridge 

1211040700  26.654  E6‐2A  Sign Bridge 

1211040700  26.655  E6‐2  Sign Bridge 



 
   

II-9 
 

RCLINK  Milepoint  MUTCD  Overhead Type 

1211040700  26.660  E6‐2A  Sign Bridge 

1211040700  26.661  E6‐2A  Sign Bridge 

1211040700  53.776  E1‐1  Sign Bridge 

1211040700  53.777  E1‐1  Sign Bridge 

1211040700  53.779  NoTrucks  Sign Bridge 

1211040700  54.578  E6‐2A  Sign Bridge 

1211040700  60.786  E11‐1C  Sign Bridge 

1211040700  60.790  E6‐2A  Sign Bridge 

1211040700  61.042  E6‐2A  Sign Bridge 

1211040700  61.042  E11‐2  Sign Bridge 

1211040700  61.042  E11‐1E  Sign Bridge 

1211040700  61.087  E6‐2A  Sign Bridge 

1211040700  61.175  E6‐2A  Sign Bridge 

1211040700  61.175  E6‐2A  Sign Bridge 

1211040700  61.175  E11‐2  Sign Bridge 

1211040700  61.182  E6‐2A  Sign Bridge 

1211040700  61.184  E6‐2A  Sign Bridge 

1211040700  61.636  E6‐2A  Sign Bridge 

1211040700  61.636  E6‐2A  Sign Bridge 

1211040700  61.679  E6‐2A  Sign Bridge 

1211040700  61.681  E6‐2A  Sign Bridge 

1211040700  61.898  E6‐2A  Sign Bridge 

1211040700  61.898  E6‐2A  Sign Bridge 

1211040700  62.043  E6‐2A  Sign Bridge 

1211040700  62.323  E6‐2A  Sign Bridge 

1211040700  62.323  E6‐2A  Sign Bridge 

1211040700  62.484  E6‐2A  Sign Bridge 

1211040700  62.484  E11‐1  Sign Bridge 

1211040700  62.486  E6‐2A  Sign Bridge 

1211040700  62.636  E6‐2A  Sign Bridge 

1211040700  62.636  E6‐2A  Sign Bridge 

1211040700  62.637  E6‐2A  Sign Bridge 

1211040700  62.637  E11‐1  Sign Bridge 

0671040700  0.139  E1‐1  Cantilever 

0891040700  0.159  D2‐1  Cantilever 

0891040700  0.299  E6‐2  Cantilever 

0631040700  0.496  D2‐2  Cantilever 

0671040700  0.690  E1‐1  Cantilever 

0891040700  0.845  E6‐2A  Cantilever 

0891040700  0.845  E11‐1  Cantilever 

0671040700  1.112  E1‐1  Cantilever 

0891040700  1.144  E6‐2  Cantilever 



 
   

II-10 
 

RCLINK  Milepoint  MUTCD  Overhead Type 

0891040700  1.210  E11‐1  Cantilever 

0891040700  1.212  E6‐2A  Cantilever 

0891040700  1.586  E6‐2  Cantilever 

0671040700  1.978  E1‐1  Cantilever 

0891040700  2.533  E1‐1  Cantilever 

0891040700  3.252  E11‐1  Cantilever 

0891040700  3.252  E6‐2A  Cantilever 

1211040700  3.390  E1‐1  Cantilever 

0891040700  3.503  E6‐2A  Cantilever 

0891040700  3.503  E11‐1  Cantilever 

0631040700  3.726  E6‐2A  Cantilever 

1211040700  3.854  E1‐1  Cantilever 

0891040700  5.253  E6‐2  Cantilever 

1211040700  5.307  E1‐1  Cantilever 

0631040700  5.754  E6‐2A  Cantilever 

0631040700  5.757  E11‐1  Cantilever 

1211040700  5.885  E1‐1  Cantilever 

0671040700  7.077  D2‐1  Cantilever 

0671040700  7.495  E6‐2  Cantilever 

0891040700  9.057  E6‐2  Cantilever 

1211040700  9.484  E6‐2A  Cantilever 

1211040700  9.485  E11‐1  Cantilever 

0891040700  9.572  E6‐2A  Cantilever 

1211040700  9.625  E11‐1  Cantilever 

1211040700  9.625  E6‐2A  Cantilever 

1211040700  9.729  E6‐2A  Cantilever 

1211040700  9.729  E11‐1C  Cantilever 

0891040700  10.201  E1‐1  Cantilever 

1211040700  10.319  E1‐1  Cantilever 

1211040700  10.603  E6‐2A  Cantilever 

1211040700  10.603  E11‐1  Cantilever 

0891040700  10.677  E1‐1  Cantilever 

1211040700  10.747  E1‐1  Cantilever 

1211040700  11.176  E6‐2A  Cantilever 

1211040700  11.179  E11‐1  Cantilever 

0891040700  11.232  E6‐2A  Cantilever 

1211040700  12.217  E1‐1  Cantilever 

1211040700  12.677  E1‐1  Cantilever 

0891040700  15.901  E6‐2A  Cantilever 

0891040700  16.158  E1‐1  Cantilever 

0891040700  16.785  E1‐1  Cantilever 

0891040700  17.023  E6‐2A  Cantilever 



 
   

II-11 
 

RCLINK  Milepoint  MUTCD  Overhead Type 

1211040700  21.017  DIAG  Cantilever 

1211040700  21.321  E6‐2  Cantilever 

1211040700  21.698  E1‐1  Cantilever 

0891040700  21.897  E1‐1  Cantilever 

1211040700  21.982  E6‐2  Cantilever 

1211040700  22.429  E1‐1  Cantilever 

1211040700  22.451  E1‐1  Cantilever 

1211040700  23.356  E6‐2  Cantilever 

0891040700  23.885  E11‐1D  Cantilever 

0891040700  23.886  E6‐2A  Cantilever 

1211040700  23.890  E1‐1  Cantilever 

0891040700  24.152  E11‐1  Cantilever 

0891040700  24.152  E6‐2A  Cantilever 

1211040700  24.339  E1‐1  Cantilever 

1211040700  24.656  E6‐2  Cantilever 

1211040700  25.005  E6‐2A  Cantilever 

1211040700  25.005  E11‐1  Cantilever 

1211040700  25.124  E1‐1  Cantilever 

1211040700  25.313  E6‐2  Cantilever 

1211040700  25.315  E11‐1  Cantilever 

1211040700  25.315  E6‐2A  Cantilever 

1211040700  25.790  E6‐2  Cantilever 

0891040700  25.830  E1‐1  Cantilever 

0891040700  26.051  E6‐2A  Cantilever 

1211040700  26.141  E6‐2  Cantilever 

1211040700  26.434  E6‐2A  Cantilever 

1211040700  26.434  E11‐1  Cantilever 

1211040700  26.434  D10‐3  Cantilever 

1211040700  53.092  E1‐1  Cantilever 

1211040700  54.181  E1‐1  Cantilever 

1211040700  54.181  E6‐2A  Cantilever 

1211040700  54.350  D2‐2  Cantilever 

1211040700  54.419  E1‐1  Cantilever 

0891040700  0.015  E6‐2  Other Overhead 

0891040700  0.129  D2‐3  Other Overhead 

0891040700  0.129  D2‐3  Other Overhead 

0891040700  0.256  MARTA  Other Overhead 

0891040700  0.261  MARTA  Other Overhead 

0631040700  0.341  E1‐1  Other Overhead 

1211040700  0.491  E1‐1  Other Overhead 

0891040700  0.573  E1‐1  Other Overhead 

0891040700  0.574  NoTrucks  Other Overhead 



 
   

II-12 
 

RCLINK  Milepoint  MUTCD  Overhead Type 

0891040700  0.575  D3‐1  Other Overhead 

0891040700  0.593  E1‐1  Other Overhead 

0891040700  0.593  D3‐1  Other Overhead 

0891040700  0.594  E1‐1  Other Overhead 

0631040700  0.632  D3‐1  Other Overhead 

0631040700  0.638  D3‐1  Other Overhead 

0631040700  0.639  NoTrucks  Other Overhead 

0631040700  0.827  E1‐1  Other Overhead 

1211040700  0.862  D3‐1  Other Overhead 

0891040700  1.267  D2‐3  Other Overhead 

0891040700  1.268  D2‐3  Other Overhead 

1211040700  1.315  D2‐2  Other Overhead 

0671040700  1.333  D3‐1  Other Overhead 

0671040700  1.334  NoTrucks  Other Overhead 

0671040700  1.334  D3‐1  Other Overhead 

0671040700  1.335  E1‐2  Other Overhead 

0671040700  1.337  NoTrucks  Other Overhead 

0671040700  1.341  D3‐1  Other Overhead 

1211040700  1.418  E1‐1  Other Overhead 

0631040700  1.523  NoTrucks  Other Overhead 

0631040700  1.525  D3‐1  Other Overhead 

1211040700  1.533  E1‐1  Other Overhead 

0631040700  1.543  D3‐1  Other Overhead 

0631040700  1.578  E11‐1  Other Overhead 

0631040700  1.578  D3‐1  Other Overhead 

0631040700  1.579  E6‐2A  Other Overhead 

0631040700  1.579  E6‐2A  Other Overhead 

0631040700  1.579  NoTrucks  Other Overhead 

0891040700  1.944  D3‐1  Other Overhead 

0891040700  1.944  NoTrucks  Other Overhead 

0891040700  1.966  D3‐1  Other Overhead 

1211040700  2.250  NoTrucks  Other Overhead 

1211040700  2.250  D3‐1  Other Overhead 

1211040700  2.266  D3‐1  Other Overhead 

1211040700  2.267  NoTrucks  Other Overhead 

1211040700  2.487  D3‐1  Other Overhead 

1211040700  2.488  NoTrucks  Other Overhead 

1211040700  2.494  D3‐1  Other Overhead 

0671040700  2.592  SlowerTraffic  Other Overhead 

0671040700  2.604  D3‐1  Other Overhead 

0671040700  2.608  D3‐1  Other Overhead 

0671040700  2.624  D3‐1  Other Overhead 



 
   

II-13 
 

RCLINK  Milepoint  MUTCD  Overhead Type 

0671040700  2.635  D3‐1  Other Overhead 

0671040700  2.643  E1‐1  Other Overhead 

1211040700  2.841  E1‐1  Other Overhead 

0631040700  2.866  D3‐1  Other Overhead 

0671040700  2.933  E1‐1  Other Overhead 

0631040700  3.162  NoTrucks  Other Overhead 

0631040700  3.170  D3‐1  Other Overhead 

0631040700  3.170  D3‐1  Other Overhead 

0631040700  3.170  NoTrucks  Other Overhead 

0891040700  3.374  D2‐3  Other Overhead 

0671040700  3.396  NoTrucks  Other Overhead 

0671040700  3.403  E1‐1  Other Overhead 

1211040700  3.459  E1‐1  Other Overhead 

0671040700  3.460  E1‐1  Other Overhead 

0631040700  3.713  D3‐1  Other Overhead 

0891040700  4.189  D2‐3  Other Overhead 

0891040700  4.191  D2‐3  Other Overhead 

0891040700  4.538  MARTA  Other Overhead 

1211040700  4.573  NoTrucks  Other Overhead 

1211040700  4.574  E6‐2A  Other Overhead 

1211040700  4.575  D3‐1  Other Overhead 

0891040700  4.585  D3‐1  Other Overhead 

0891040700  4.597  D3‐1  Other Overhead 

1211040700  4.616  D3‐1  Other Overhead 

1211040700  4.617  NoTrucks  Other Overhead 

1211040700  4.618  E6‐2  Other Overhead 

0631040700  4.664  D2‐1  Other Overhead 

0631040700  4.794  E1‐1  Other Overhead 

0631040700  4.795  D10‐3  Other Overhead 

1211040700  4.814  E6‐2  Other Overhead 

0631040700  4.825  NoTrucks  Other Overhead 

0631040700  4.828  D3‐1  Other Overhead 

0631040700  4.828  E1‐1  Other Overhead 

0891040700  4.940  D2‐3  Other Overhead 

0671040700  5.197  DIAG  Other Overhead 

0671040700  5.241  D3‐1  Other Overhead 

0671040700  5.293  NoTrucks  Other Overhead 

0671040700  5.294  D3‐1  Other Overhead 

0891040700  5.329  D2‐3  Other Overhead 

0631040700  5.377  E1‐1  Other Overhead 

1211040700  5.809  E1‐1  Other Overhead 

1211040700  6.284  E1‐1  Other Overhead 



 
   

II-14 
 

RCLINK  Milepoint  MUTCD  Overhead Type 

0891040700  6.485  D3‐1  Other Overhead 

0891040700  6.491  NoTrucks  Other Overhead 

0891040700  6.557  NoTrucks  Other Overhead 

0891040700  6.560  D3‐1  Other Overhead 

0671040700  7.313  D2‐3  Other Overhead 

0671040700  7.313  D2‐3  Other Overhead 

1211040700  7.609  E1‐1  Other Overhead 

0891040700  7.776  E1‐1  Other Overhead 

0891040700  7.778  D3‐1  Other Overhead 

0891040700  7.780  NoTrucks  Other Overhead 

0891040700  7.791  D3‐1  Other Overhead 

0891040700  7.791  E1‐1  Other Overhead 

0891040700  7.791  E1‐1  Other Overhead 

1211040700  7.970  E1‐1  Other Overhead 

1211040700  7.972  D3‐1  Other Overhead 

1211040700  7.972  E1‐1  Other Overhead 

1211040700  7.979  D3‐1  Other Overhead 

1211040700  7.980  NoTrucks  Other Overhead 

1211040700  7.980  E1‐1  Other Overhead 

1211040700  8.901  D3‐1  Other Overhead 

1211040700  8.902  D3‐1  Other Overhead 

0891040700  8.938  D3‐1  Other Overhead 

0891040700  8.942  NoTrucks  Other Overhead 

0891040700  8.942  E1‐1  Other Overhead 

0891040700  8.954  D3‐1  Other Overhead 

0891040700  8.955  E1‐1  Other Overhead 

0891040700  8.956  E1‐1  Other Overhead 

1211040700  9.033  DIAG  Other Overhead 

1211040700  9.036  D3‐1  Other Overhead 

1211040700  9.050  D3‐1  Other Overhead 

0891040700  9.265  E1‐1  Other Overhead 

0891040700  9.269  NoTrucks  Other Overhead 

0891040700  9.269  D3‐1  Other Overhead 

0891040700  9.271  E1‐1  Other Overhead 

0891040700  9.285  D3‐1  Other Overhead 

0891040700  9.286  NoTrucks  Other Overhead 

1211040700  9.902  D3‐1  Other Overhead 

1211040700  10.097  E6‐2A  Other Overhead 

0891040700  10.596  E1‐1  Other Overhead 

0891040700  11.317  E1‐1  Other Overhead 

1211040700  11.479  D3‐1  Other Overhead 

1211040700  11.492  D3‐1  Other Overhead 



 
   

II-15 
 

RCLINK  Milepoint  MUTCD  Overhead Type 

1211040700  11.890  E1‐1  Other Overhead 

0891040700  12.310  NoTrucks  Other Overhead 

0891040700  12.313  D3‐1  Other Overhead 

0891040700  12.351  D3‐1  Other Overhead 

0891040700  12.352  E1‐1  Other Overhead 

0891040700  12.353  NoTrucks  Other Overhead 

1211040700  12.512  D3‐1  Other Overhead 

1211040700  12.516  NoTrucks  Other Overhead 

1211040700  12.520  D3‐1  Other Overhead 

0891040700  13.724  NoTrucks  Other Overhead 

0891040700  13.725  D3‐1  Other Overhead 

0891040700  13.744  D3‐1  Other Overhead 

0891040700  14.954  marta  Other Overhead 

0891040700  14.963  MARTA  Other Overhead 

0891040700  15.348  E1‐1  Other Overhead 

0891040700  15.349  NoTrucks  Other Overhead 

0891040700  15.350  D3‐1  Other Overhead 

0891040700  15.356  D3‐1  Other Overhead 

0891040700  15.357  NoTrucks  Other Overhead 

0891040700  15.357  E1‐1  Other Overhead 

0891040700  16.117  D3‐1  Other Overhead 

0891040700  16.144  D3‐1  Other Overhead 

0891040700  16.250  E1‐1  Other Overhead 

0891040700  16.252  D3‐1  Other Overhead 

0891040700  16.252  NoTrucks  Other Overhead 

0891040700  16.260  NoTrucks  Other Overhead 

0891040700  16.262  D3‐1  Other Overhead 

0891040700  17.183  NoTrucks  Other Overhead 

0891040700  17.184  D3‐1  Other Overhead 

0891040700  17.196  D3‐1  Other Overhead 

0891040700  17.197  NoTrucks  Other Overhead 

0891040700  17.197  E1‐1  Other Overhead 

0891040700  19.067  D3‐1  Other Overhead 

0891040700  19.069  D3‐1  Other Overhead 

0891040700  19.347  D3‐1  Other Overhead 

0891040700  19.349  D3‐1  Other Overhead 

0891040700  19.674  E1‐1  Other Overhead 

0891040700  19.979  NoTrucks  Other Overhead 

0891040700  19.979  D3‐1  Other Overhead 

0891040700  19.992  NoTrucks  Other Overhead 

0891040700  19.993  D3‐1  Other Overhead 

0891040700  20.143  E1‐1  Other Overhead 



 
   

II-16 
 

RCLINK  Milepoint  MUTCD  Overhead Type 

0891040700  20.834  D3‐1  Other Overhead 

0891040700  20.844  D3‐1  Other Overhead 

0891040700  21.114  NoTrucks  Other Overhead 

0891040700  21.114  D3‐1  Other Overhead 

0891040700  21.128  NoTrucks  Other Overhead 

0891040700  21.130  D3‐1  Other Overhead 

1211040700  21.546  NoTrucks  Other Overhead 

1211040700  21.560  NoTrucks  Other Overhead 

1211040700  22.252  D2‐3  Other Overhead 

0891040700  22.515  E1‐1  Other Overhead 

0891040700  22.515  D3‐1  Other Overhead 

0891040700  22.515  NoTrucks  Other Overhead 

0891040700  22.515  E1‐1  Other Overhead 

0891040700  22.516  D3‐1  Other Overhead 

0891040700  22.520  NoTrucks  Other Overhead 

1211040700  22.627  D2‐3  Other Overhead 

1211040700  22.830  E6‐2  Other Overhead 

1211040700  22.834  E1‐1  Other Overhead 

0891040700  23.043  E1‐1  Other Overhead 

1211040700  23.199  E1‐1  Other Overhead 

0891040700  23.656  E1‐1  Other Overhead 

0891040700  23.657  D3‐1  Other Overhead 

0891040700  23.658  NoTrucks  Other Overhead 

0891040700  23.675  NoTrucks  Other Overhead 

0891040700  23.676  D3‐1  Other Overhead 

1211040700  24.110  D2‐3  Other Overhead 

0891040700  24.828  NoTrucks  Other Overhead 

0891040700  24.831  D3‐1  Other Overhead 

1211040700  24.835  NoTrucks  Other Overhead 

1211040700  24.835  E1‐1  Other Overhead 

0891040700  24.987  D3‐1  Other Overhead 

1211040700  25.230  D2‐3  Other Overhead 

0891040700  25.734  D3‐1  Other Overhead 

0891040700  25.736  NoTrucks  Other Overhead 

0891040700  25.764  NoTrucks  Other Overhead 

0891040700  25.766  D3‐1  Other Overhead 

1211040700  26.068  E6‐2  Other Overhead 

1211040700  26.075  NoTrucks  Other Overhead 

1211040700  26.100  E1‐1  Other Overhead 

1211040700  26.137  E11‐1  Other Overhead 

1211040700  53.200  E1‐1  Other Overhead 

1211040700  53.424  D3‐1  Other Overhead 



 
   

II-17 
 

RCLINK  Milepoint  MUTCD  Overhead Type 

1211040700  53.437  NoTrucks  Other Overhead 

1211040700  53.438  E1‐1  Other Overhead 

1211040700  53.438  D3‐1  Other Overhead 

1211040700  53.439  E1‐1  Other Overhead 

1211040700  54.368  D3‐1  Other Overhead 

1211040700  54.397  NoTrucks  Other Overhead 

1211040700  54.400  D3‐1  Other Overhead 

1211040700  61.414  D3‐1  Other Overhead 

1211040700  61.414  E6‐2A  Other Overhead 

1211040700  61.416  NoTrucks  Other Overhead 

1211040700  61.417  E6‐2A  Other Overhead 

1211040700  61.417  D10‐2  Other Overhead 

1211040700  61.420  NoTrucks  Other Overhead 

1211040700  61.423  D3‐1  Other Overhead 

1211040700  61.431  D10‐3  Other Overhead 

1211040700  61.432  E6‐2A  Other Overhead 

1211040700  61.435  D3‐1  Other Overhead 
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Sign Bridge (323 Cases) 
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Cantilever (84 Cases) 

 

 

 

 

 

 

 



 
   

II-73 
 

 

 

 

 

 

 



 
   

II-74 
 

 

 

 

 

 

 



 
   

II-75 
 

 

 

 

 

 

 



 
   

II-76 
 

 

 

 

 

 

 



 
   

II-77 
 

 

 

 

 

 

 



 
   

II-78 
 

 

 

 

 

 

 



 
   

II-79 
 

 

 

 

 

 

 



 
   

II-80 
 

 

 

 

 

 

 



 
   

II-81 
 

 

 

 

 

 

 



 
   

II-82 
 

 

 

 

 

 

 



 
   

II-83 
 

 

 

 

 

 

 



 
   

II-84 
 

 

 

 

 

 

 



 
   

II-85 
 

 

 

 

 

 



 
   

II-86 
 

Other Overhead (236 Cases) 
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